Publications by authors named "Seiji Hira"

In Drosophila, the expression of germline genes is initiated in primordial germ cells (PGCs) and is known to be associated with germline establishment. However, the transcriptional regulation of germline genes remains elusive. Previously, we found that the BTB/POZ-Zn-finger protein, Mamo, is necessary for the expression of the germline gene, vasa, in PGCs.

View Article and Find Full Text PDF
Article Synopsis
  • The gene under study is crucial for germline establishment, and finding its activators could enhance understanding of germline development.
  • A truncated version of the BTB/POZ-Zn-finger protein Mamo, called MamoAF, has been identified as a strong activator of gene expression in primordial germ cells and brain.
  • The research suggests that MamoAF works with CBP and the activator OvoB in a coordinated network to epigenetically and transcriptionally regulate the gene's expression.
View Article and Find Full Text PDF

Epigenetic silencing is critical for maintaining germline stem cells in Drosophila ovaries. However, it remains unclear how the differentiation factor, Bag-of-marbles (Bam), counteracts transcriptional silencing. We found that the trimethylation of lysine 36 on histone H3 (H3K36me3), a modification that is associated with gene activation, is enhanced in Bam-expressing cells.

View Article and Find Full Text PDF

Post-translational histone modifications play key roles in gene regulation, development, and differentiation, but their dynamics in living organisms remain almost completely unknown. To address this problem, we developed a genetically encoded system for tracking histone modifications by generating fluorescent modification-specific intracellular antibodies (mintbodies) that can be expressed in vivo. To demonstrate, an H3 lysine 9 acetylation specific mintbody (H3K9ac-mintbody) was engineered and stably expressed in human cells.

View Article and Find Full Text PDF

Alterations in chromatin structure dynamically occur during germline development in Drosophila and are essential for the production of functional gametes. We had previously reported that the maternal factor Mamo, which contains both a BTB/POZ domain and C₂H₂ zinc-finger domains and is enriched in primordial germ cells (PGCs), is required for the regulation of meiotic chromatin structure and the production of functional gametes. However, the molecular mechanisms by which Mamo regulates germline development remained unclear.

View Article and Find Full Text PDF

Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood.

View Article and Find Full Text PDF