Our study explored how meaningful hand gestures, alongside spoken words, can help autistic individuals to understand speech, especially when the speech quality is poor, such as when there is a lot of noise around. Previous research has suggested that meaningful hand gestures might be processed differently in autistic individuals, and we therefore expected that these hand gestures might aid them less in understanding speech in adverse listening conditions than for non-autistic people. To this end, we asked participants to watch and listen to videos of a woman uttering a Dutch action verb.
View Article and Find Full Text PDFResearch into reading has benefitted from the emergence of powerful computational models that account for reading behavior at different levels. Such models become more powerful when the underlying anatomy, architecture or 'physiology' can be linked to the behavior of interest. OB1-reader is a reading model that simulates the processes underlying reading in the human brain.
View Article and Find Full Text PDFDuring communication in real-life settings, our brain often needs to integrate auditory and visual information and at the same time actively focus on the relevant sources of information, while ignoring interference from irrelevant events. The interaction between integration and attention processes remains poorly understood. Here, we use rapid invisible frequency tagging and magnetoencephalography to investigate how attention affects auditory and visual information processing and integration, during multimodal communication.
View Article and Find Full Text PDFDeep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task.
View Article and Find Full Text PDFRecurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks, but the computations underlying recurrent processing remain unclear. In this article, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain.
View Article and Find Full Text PDFFrequency tagging has been successfully used to investigate selective stimulus processing in electroencephalography (EEG) or magnetoencephalography (MEG) studies. Recently, new projectors have been developed that allow for frequency tagging at higher frequencies (>60 Hz). This technique, rapid invisible frequency tagging (RIFT), provides two crucial advantages over low-frequency tagging as (i) it leaves low-frequency oscillations unperturbed, and thus open for investigation, and ii) it can render the tagging invisible, resulting in more naturalistic paradigms and a lack of participant awareness.
View Article and Find Full Text PDFObject and scene recognition both require mapping of incoming sensory information to existing conceptual knowledge about the world. A notable finding in brain-damaged patients is that they may show differentially impaired performance for specific categories, such as for "living exemplars". While numerous patients with category-specific impairments have been reported, the explanations for these deficits remain controversial.
View Article and Find Full Text PDFAlthough feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds.
View Article and Find Full Text PDFFeed-forward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Research in humans however suggests that while feedforward activity may suffice for sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.
View Article and Find Full Text PDFA fundamental component of interacting with our environment is gathering and interpretation of sensory information. When investigating how perceptual information influences decision-making, most researchers have relied on manipulated or unnatural information as perceptual input, resulting in findings that may not generalize to real-world scenes. Unlike simplified, artificial stimuli, real-world scenes contain low-level regularities that are informative about the structural complexity, which the brain could exploit.
View Article and Find Full Text PDFWhat is the long-term trajectory of semantic memory deficits in patients who have suffered structural brain damage? Memory is, per definition, a changing faculty. The traditional view is that after an initial recovery period, the mature human brain has little capacity to repair or reorganize. More recently, it has been suggested that the central nervous system may be more plastic with the ability to change in neural structure, connectivity, and function.
View Article and Find Full Text PDFSelective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity.
View Article and Find Full Text PDFBlindsight refers to the observation of residual visual abilities in the hemianopic field of patients without a functional V1. Given the within- and between-subject variability in the preserved abilities and the phenomenal experience of blindsight patients, the fine-grained description of the phenomenon is still debated. Here we tested a patient with established "perceptual" and "attentional" blindsight (c.
View Article and Find Full Text PDF