High-molecular-weight dextrin (WS-1000) was produced from waxy corn starch and enzymatically modified to link glucose by α-1,6 glycosidic bond at the terminal point of the glucose chain, forming MWS-1000. In this study, the physical properties of MWS-1000 were characterized, and the advantages of its use as a food modifier were described. From rheological and calorimetric studies, it was found that MWS-1000 does not undergo retrogradation, but it does not prevent the retrogradation of WS-1000, suggesting that they have no intermolecular interaction in solution.
View Article and Find Full Text PDFWe prepared a high-molecular-weight modified dextrin (MWS-1000) from a partial hydrolysate of waxy corn starch with a weight average molecular weight of 1 × 106 (WS-1000) using Paenibacillus alginolyticus PP710 α-glucosyltransferase. The gel permeation chromatography showed that the weight average molecular weight of MWS-1000 was almost the same as that of WS-1000. The side chain lengths of WS-1000 and MWS-1000 after isomaltodextranase digestion were also shown to be similar to each other by high-performance anion exchange chromatography with pulsed amperometric detection.
View Article and Find Full Text PDFBackground: Enzymatic removal of hemicellulose components such as xylan is an important factor for maintaining high glucose conversion from lignocelluloses subjected to low-severity pretreatment. Supplementation of xylanase in the cellulase mixture enhances glucose release from pretreated lignocellulose. Filamentous fungi produce multiple xylanases in their cellulase system, and some of them have modular structures consisting of a catalytic domain and a family 1 carbohydrate-binding module (CBM1).
View Article and Find Full Text PDFTalaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the high cellulolytic enzyme-producing fungi. T. cellulolyticus exhibits the potential ability for high amount production of enzyme proteins.
View Article and Find Full Text PDFCellulose-inducible endo-β-1,4-xylanase (Xyl10A) from the mesophilic fungus Acremonium cellulolyticus was purified, characterized, and expressed by a homologous expression system. A. cellulolyticus CF-2612 produces a high level of xylanase upon induction by Solka-Floc cellulose.
View Article and Find Full Text PDFA starch-inducible homologous expression system in Acremonium cellulolyticus was constructed to successfully produce recombinant cellulolytic enzymes. A. cellulolyticus Y-94 produced amylolytic enzymes and cellulolytic enzymes as major proteins in the culture supernatant when grown with soluble starch (SS) and Solka-Flock cellulose (SF), respectively.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2011
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor to maintain energy balance at both the cellular and the whole-body levels and is therefore a potential target for drug design against metabolic syndrome, obesity and type 2 diabetes. Here, the crystal structure of the phosphorylated-state mimic T172D mutant kinase domain from the human AMPK α2 subunit is reported in the apo form and in complex with a selective inhibitor, compound C. The AMPK α2 kinase domain exhibits a typical bilobal kinase fold and exists as a monomer in the crystal.
View Article and Find Full Text PDFThe 70 kDa heat-shock proteins (Hsp70s) are highly conserved chaperones that are involved in several cellular processes, such as protein folding, disaggregation and translocation. In this study, the crystal structures of the human Hsp70 nucleotide-binding domain (NBD) fragment were determined in the nucleotide-free state and in complex with adenosine 5'-(beta,gamma-imido)triphosphate (AMPPNP). The structure of the nucleotide-free NBD fragment is similar to that of the AMPPNP-bound NBD fragment and is designated as the ;closed form'.
View Article and Find Full Text PDFInteractions of Bcl-2 family proteins play a regulatory role in mitochondrial apoptosis. The pro-apoptotic protein Bak resides in the outer mitochondrial membrane, and the formation of Bak homo- or heterodimers is involved in the regulation of apoptosis. The previously reported structure of the human Bak protein (residues Glu16-Gly186) revealed that a zinc ion was coordinated with two pairs of Asp160 and His164 residues from the symmetry-related molecules.
View Article and Find Full Text PDFCyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2008
The target of diphtheria toxin is the diphthamide residue in translation elongation factor 2 (EF-2), which is generated by a three-step post-translational modification of a specific histidine residue in the EF-2 precursor. In the second modification step, an S-adenosylmethionine-dependent methyltransferase, diphthine synthase (DS), catalyzes the trimethylation of the EF-2 precursor. The homodimeric crystal structures of the archaeal diphthine synthases from Pyrococcus horikoshii OT3 and Aeropyrum pernix K1 have been determined.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
December 2007
The gene encoding TTHA1544 is a singleton found in the Thermus thermophilus HB8 genome and encodes a 131-amino-acid protein. The crystal structure of TTHA1544 has been determined at 2.0 A resolution by the single-wavelength anomalous dispersion method in order to elucidate its function.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2007
Familial oncocytic thyroid carcinoma is associated with a missense mutation, P308Q, in the C-terminal domain of Tim44. Tim44 is the mitochondrial inner-membrane translocase subunit and it functions as a membrane anchor for the mitochondrial heat-shock protein 70 (mtHsp70). Here, the crystal structure of the human Tim44 C-terminal domain complexed with pentaethylene glycol has been determined at 1.
View Article and Find Full Text PDFInterleukin (IL)-15 is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is unique among cytokines due to its participation in a trans signaling mechanism in which IL-15 receptor alpha (IL-15Ralpha) from one subset of cells presents IL-15 to neighboring IL-2Rbeta/gammac-expressing cells. Here we present the crystal structure of IL-15 in complex with the sushi domain of IL-15Ralpha.
View Article and Find Full Text PDFThe nuclear pore complex mediates the transport of macromolecules across the nuclear envelope (NE). The vertebrate nuclear pore protein Nup35, the ortholog of Saccharomyces cerevisiae Nup53p, is suggested to interact with the NE membrane and to be required for nuclear morphology. The highly conserved region between vertebrate Nup35 and yeast Nup53p is predicted to contain an RNA-recognition motif (RRM) domain.
View Article and Find Full Text PDFThe topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently.
View Article and Find Full Text PDFThe role of the active site Cu(2+) of phenylethylamine oxidase from Arthrobacter globiformis (AGAO) has been studied by substitution with other divalent cations, where we were able to remove >99.5% of Cu(2+) from the active site. The enzymes reconstituted with Co(2+) and Ni(2+) (Co- and Ni-AGAO) exhibited 2.
View Article and Find Full Text PDFThe quinone cofactor TPQ in copper amine oxidase is generated by posttranslational modification of an active site tyrosine residue. Using X-ray crystallography, we have probed the copper-dependent autooxidation process of TPQ in the enzyme from Arthrobacter globiformis. Apo enzyme crystals were anaerobically soaked with copper; the structure determined from this crystal provides a view of the initial state: the unmodified tyrosine coordinated to the bound copper.
View Article and Find Full Text PDF