Publications by authors named "Seiichi Urushiyama"

WNK kinases are a small group of unique serine/threonine protein kinases that are conserved among multicellular organisms. Mutations in WNK1-4 cause pseudohypoaldosteronism type II-a form of hypertension. WNKs have been linked to the STE20 kinases and ion carriers, but the underlying molecular mechanisms by which WNKs regulate cellular processes in whole animals are unknown.

View Article and Find Full Text PDF

The Ras-MAP kinase pathway regulates varieties of fundamental cellular events. In Caenorhabditis elegans, this pathway is required for oocyte development; however, the nature of its up-stream regulators has remained elusive. Here, we identified a C.

View Article and Find Full Text PDF

The WNK1 and WNK4 genes have been found to be mutated in some patients with hyperkalemia and hypertension caused by pseudohypoaldosteronism type II. The clue to the pathophysiology of pseudohypoaldosteronism type II was its striking therapeutic response to thiazide diuretics, which are known to block the sodium chloride cotransporter (NCC). Although this suggests a role for WNK1 in hypertension, the precise molecular mechanisms are largely unknown.

View Article and Find Full Text PDF

TGF-beta signalling regulates cell growth, differentiation, morphogenesis and apoptosis. MAFbx/Atrogin-1 has been identified as a regulator for skeletal muscle atrophy and encodes an F-box-type E3 ubiquitin ligase. However, little is known about how MAFbx/Atrogin-1 regulates cellular signalling.

View Article and Find Full Text PDF

Background: Wnt signalling plays a critical role in many developmental processes and tumorigenesis. Wnt/beta-catenin signalling induces the stabilization of cytosolic beta-catenin, which interacts with TCF/LEF-1 transcription factors, thereby inducing expression of Wnt-target genes. Recent evidence suggests that a specific MAP kinase pathway involving the MAP kinase kinase kinase TAK1 and the MAP kinase NLK counteract Wnt signalling.

View Article and Find Full Text PDF

Background: The Wnt signal transduction pathway regulates various aspects of embryonal development and has been implicated in promoting cancer. Signalling by Wnts leads to the stabilization of cytosolic beta-catenin, which then associates with TCF transcription factors to regulate expression of Wnt-target genes. The Wnt pathway is further subject to cross-regulation at various levels by other components.

View Article and Find Full Text PDF