Triethylphosphine oxide [(C2H5)3P[double bond, length as m-dash]O; TEPO] was intercalated into protonated Dion-Jacobson-type ion-exchangeable layered perovskites, HLaNb2O7·xH2O (HLaNb) and HCa2Nb3O10·xH2O (HCaNb), by hydrolysis of their n-decoxy derivatives (C10O-HLaNb or C10O-HCaNb) in the presence of TEPO. The interlayer distances of the products (TEPO/C10O-HLaNb and TEPO/C10O-HCaNb) were smaller than those of the corresponding n-decoxy derivatives, but still larger than those of anhydrous protonated forms of HLaNb and HCaNb. The solid-state (31)P NMR signals of the products observed at 94 ppm (TEPO/C10O-HLaNb) and 93 ppm (TEPO/C10O-HCaNb) exhibited large downfield shifts from that of the physisorbed TEPO.
View Article and Find Full Text PDFOrganically modified niobate nanosheets are promising building blocks for the design of advanced hybrid materials. Nanosheets with controlled thickness and surface composition are important for precise structural design of the nanosheet-based materials. In this work, single-layered and double-layered niobate nanosheets functionalized by phenylphosphonate moieties were selectively prepared by interlayer grafting of A-type and B-type intercalation derivatives of potassium hexaniobate (K4Nb6O17·3H2O) with phenylphosphonic acid (PPA), followed by exfoliation by ultrasonication in acetonitrile.
View Article and Find Full Text PDF