In this contribution, we propose a new synthetic approach to tetrodotoxin (TTX), one of the most famous marine toxins that, after first preparing a functionalized linear substrate, forms a cyclohexane core from the substrate utilizing our mercuric triflate (Hg(OTf))-catalyzed cycloisomerization reaction. The concept was applied to the synthesis of 11--6,7,8-trideoxyTTX and 11--4,9-anhydro-6,7,8-trideoxyTTX, which are unnatural TTX analogues, demonstrating the validity of our new approach.
View Article and Find Full Text PDFThe enantioselective total syntheses of lepadiformine marine alkaloids, azatricyclic natural products isolated from marine tunicates, were completed. These alkaloids have a unique chemical structure characterized by the trans-1-azadecalin (AB ring system) fused with the spirocyclic ring (AC ring system). Here we found that a cycloisomerization reaction from functionalized linear substrates to a 1-azaspiro[4.
View Article and Find Full Text PDFA cytotoxic marine alkaloid (-)-lepadiformine A (1) possesses a unique structure characterized by the trans-1-azadecalin AB ring system fused with the AC spiro-cyclic ring. In this research, we found that a cycloisomerization reaction from amino ynone 2 to a 1-azaspiro[4.5]decane skeleton 3, corresponding to the AC ring system of 1, is promoted by Hg(OTf)(2).
View Article and Find Full Text PDF