Publications by authors named "Seif O Cholakh"

The results of numerical SRIM and SCAPS calculations for the ionization, displacement and heating of hybrid perovskites under the influence of protons (E = 0.15, 3.0 and 18 MeV) are presented and show that the lowest transfer energy is demonstrated by the MAPbI, FAPbBr and FAPbI compounds, which represent the greatest potential for use as solar cells in space devices.

View Article and Find Full Text PDF

This study is devoted to investigating the stability of metal-organic framework (MOF)-hybrid perovskites consisting of CHNHPbI (MAPbI) and UiO-66 without a functional group and UiO-66 with different COOH, NH,and F functional groups under external influences including heat, light, and humidity. By conducting crystallinity, optical, and X-ray photoelectron spectra (XPS) measurements after long-term aging, all of the prepared MAPbI3@UiO-66 nanocomposites (with pristine UiO-66 or UiO-66 with additional functional groups) were stable to light soaking and a relative humidity (RH) of 50%. Moreover, the UiO-66 and UiO-66-(F) hybrid perovskite films possessed a higher heat tolerance than the other two UiO-66 with the additional functional groups of NH and COOH.

View Article and Find Full Text PDF

Thermal effects in organo-metal halide perovskites are studied by ab initio molecular dynamics (MD) simulations performed at effective temperatures of 293 and 383 K and by X-ray photoelectron spectroscopy (XPS). We find that the cause of thermal instability in this class of perovskites is the rotation of the methylammonium (MA) groups that destroy the rigid lattice of pure compounds (MAPbI and MAPbBr). When the Pb-I lattice is initially distorted by partial replacement of the I with Cl or Br, this not only prevents formation of PbI seeds but also improves lattice flexibility and stability against the temperature-induced motion and rotation of MA groups.

View Article and Find Full Text PDF

In this study, we investigate the photo-/thermal degradation mechanism of hybrid perovskites by using x-ray photoelectron (XPS) valence band (VB) spectra coupling with density functional theory (DFT) calculations. Herein, CHNHPbI is respectively subjected to irradiation with visible light and annealing at an exposure of 0-1000 h. It is found from XPS survey spectra that, in both cases (irradiation and annealing), a decrease in the I:Pb ratio is observed with aging time, which unambiguously indicates the formation of PbI as the product of photo/thermal degradation.

View Article and Find Full Text PDF

We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface.

View Article and Find Full Text PDF

This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure.

View Article and Find Full Text PDF

The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1moldm(-3) phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed.

View Article and Find Full Text PDF

This paper reports on the surface modification of a Ti-15Mo alloy by plasma electrolytic oxidation (PEO). This process was carried out in solutions of 0.1M Ca(H2PO2)2 with various concentrations of tricalcium phosphate (Ca3(PO4)2), wollastonite (CaSiO3), or silica (SiO2) using voltages of up to 350V.

View Article and Find Full Text PDF