Publications by authors named "Seied Ali Hosseini"

Cancer treatment resistance is a caused by presence of various types of cells and heterogeneity within the tumor. Tumor cell-cell and cell-microenvironment interactions play a significant role in the tumor progression and invasion, which have important implications for diagnosis, and resistance to chemotherapy. In this study, we develop 3D bioprinted in vitro models of the breast cancer tumor microenvironment made of co-cultured cells distributed in a hydrogel matrix with controlled architecture to model tumor heterogeneity.

View Article and Find Full Text PDF

Since the urease enzyme creates gastric cancer, peptic ulcer, hepatic coma, and urinary stones in millions of people worldwide, it is essential to find strong inhibitors to help patients. Natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients, the so-called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, and cosmetic applications.

View Article and Find Full Text PDF

During cancer progression, tumors shed different biomarkers into the bloodstream, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). The analysis of these biomarkers in the blood, known as 'liquid biopsy' (LB), is a promising approach for early cancer detection and treatment monitoring, and more recently, as a means for cancer therapy. Previous reviews have discussed the role of CTCs and ctDNA in cancer progression; however, ctDNA and EVs are rapidly evolving with technological advancements and computational analysis and are the subject of enormous recent studies in cancer biomarkers.

View Article and Find Full Text PDF

In immunobead-based assays, micro/nanobeads are functionalized with antibodies to capture the target analytes, which can significantly improve the assay's performance. The immunobead-based assays have been recently combined with microfluidic mixing devices and customized for a variety of applications. However, device design and process optimization to achieve the best performance remain a substantial technological challenge.

View Article and Find Full Text PDF

Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles' behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction-expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier-Stokes equations is conducted using the finite element method to determine the streamlines and vortices.

View Article and Find Full Text PDF

This paper introduces an integrated microfluidic chip as a promising tool to measure the concentration of bladder cancer cells (BCC) in urine samples. Silicon microchannels were used as trapping gates for both floated BCC and leukocytes which are found in the urine of patients. By the assistance of the gold electrodes patterned at the bottom of the micro gates, the capacitance of captured cancerous and blood cells were measured.

View Article and Find Full Text PDF

An integrated nano-electromechanical chip (NELMEC) has been developed for the label-free distinguishing of both epithelial and mesenchymal circulating tumor cells (ECTCs and MCTCs, respectively) from white blood cells (WBCs). This nanoelectronic microfluidic chip fabricated by silicon micromachining can trap large single cells (>12 µm) at the opening of the analysis microchannel arrays. The nature of the captured cells is detected using silicon nanograss (SiNG) electrodes patterned at the entrance of the channels.

View Article and Find Full Text PDF