Publications by authors named "Sehnaz Ferdosh"

Article Synopsis
  • A rapid drug susceptibility test is crucial for combating drug-resistant tuberculosis, with research exploring next generation sequencing (NGS) as a replacement for traditional testing methods.
  • This study assessed the effectiveness of a genome analysis tool, AAICare®-TB, for predicting drug resistance in Mycobacterium tuberculosis compared to two other tools, TB-Profiler and Mykrobe, using whole genome sequences from 120 strain isolates.
  • AAICare®-TB successfully predicted drug resistance for multiple first and second-line tuberculosis drugs in 93 samples, aligning with WHO guidelines on mutation categorization.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by the aggregation of Tau protein and Amyloid-β peptides (Aβ 1-40 and Aβ 1-42). A loss of ribosomal population is also observed in the neurons in affected regions of AD. Our studies demonstrated that in vitro aggregation of amyloid forming proteins, Aβ peptides and Tau protein variants (AFPs), in the vicinity of yeast 80S ribosome can induce co-aggregation of ribosomal components.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the appearance of neurofibrillary tangles comprising of the Tau protein and aggregation of amyloid-β peptides (Aβ 1-40 and Aβ 1-42). A concomitant loss of the ribosomal population is also observed in AD-affected neurons. Our studies demonstrate that, similarly to Tau protein aggregation, in vitro aggregation of Aβ peptides in the vicinity of the yeast 80S ribosome can induce co-aggregation of ribosomal components.

View Article and Find Full Text PDF

Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases.

View Article and Find Full Text PDF

The human tau is a microtubule-associated intrinsically unstructured protein that forms intraneuronal cytotoxic deposits in neurodegenerative diseases, like tauopathies. Recent studies indicate that in Alzheimer's disease, ribosomal dysfunction might be a crucial event in the disease pathology. Our earlier studies had demonstrated that amorphous protein aggregation in the presence of ribosome can lead to sequestration of the ribosomal components.

View Article and Find Full Text PDF