Magnetic gels are composite materials consisting of a polymer matrix and embedded magnetic particles. Those are mechanically coupled to each other, giving rise to the magnetostrictive effects as well as to a controllable overall elasticity responsive to external magnetic fields. Due to their inherent composite and thereby multiscale nature, a theoretical framework bridging different levels of description is indispensable for understanding the magnetomechanical properties of magnetic gels.
View Article and Find Full Text PDFDuring May and June 2015, an outbreak of the Middle East respiratory syndrome (MERS) occurred in Korea, which raised the fear of contagion throughout society and suppressed the use of public transportation systems. Exploring daily ridership data of the Seoul bus transportation system, along with the number of infected patients and search volume in web portals, we observe that ridership decreased abruptly while attention was heavily focused online. Then this temporal reduction recovered exponentially with a characteristic time of 3 weeks when newly confirmed cases began to decrease.
View Article and Find Full Text PDFIn this study, we formulate a density functional theory (DFT) for systems of labeled particles, considering a two-dimensional bead-spring lattice with a magnetic dipole on every bead as a model for ferrogels. On the one hand, DFT has been widely studied to investigate fluidlike states of materials, in which constituent particles are not labeled as they can exchange their positions without energy cost. On the other hand, in ferrogels consisting of magnetic particles embedded in elastic polymer matrices, the particles are labeled by their positions as their neighbors do not change over time.
View Article and Find Full Text PDFThe interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2018
Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled.
View Article and Find Full Text PDFGeometric confinements are frequently encountered in soft matter systems and in particular significantly alter the dynamics of swimming microorganisms in viscous media. Surface-related effects on the motility of microswimmers can lead to important consequences in a large number of biological systems, such as biofilm formation, bacterial adhesion and microbial activity. On the basis of low-Reynolds-number hydrodynamics, we explore the state diagram of a three-sphere microswimmer under channel confinement in a slit geometry and fully characterize the swimming behavior and trajectories for neutral swimmers, puller- and pusher-type swimmers.
View Article and Find Full Text PDFHuman beings develop the land and transform land use patterns, constructing artificial structures. Among them, the city is a representative system and its morphology has attracted much attention. While most existing studies have been devoted to individual dynamics and focused on the proximity of specific areas of a city, we here pay attention to the city as a complex system, where interactions between individuals give rise to emergent properties.
View Article and Find Full Text PDFWe study the mechanism of human arm-posture control by means of nonlinear dynamics and quantitative time series analysis methods. Utilizing linear and nonlinear measures in combination, we find that pathological tremors emerge in patient dynamics and serve as a main feature discriminating between normal and patient groups. The deterministic structure accompanied with loss of complexity inherent in the tremor dynamics is also revealed.
View Article and Find Full Text PDFSocial systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2012
The Metropolitan Seoul Subway system is examined through the use of the gravity model. Exponents describing the power-law dependence on the time distance between stations are obtained, which reveals a universality for subway lines of the same topology. In the short (time) distance regime the number of passengers between stations does not grow with the decrease in the distance, thus deviating from the power-law behavior.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2010
Starting from a master equation, we derive the evolution equation for the size distribution of elements in an evolving system, where each element can grow, divide into two, and produce new elements. We then probe general solutions of the evolution equation, to obtain such skew distributions as power-law, log-normal, and Weibull distributions, depending on the growth or division and production. Specifically, repeated production of elements of uniform size leads to power-law distributions, whereas production of elements with the size distributed according to the current distribution as well as no production of new elements results in log-normal distributions.
View Article and Find Full Text PDF