Publications by authors named "Segretain D"

Background: The endocytosis of Gap junction plaques (GJP) requires cytoskeletal forces to internalize such large membranous structures. Actin, which partners the connexin proteins constituting Gap junctions and is located close to Annular Gap Junctions (AGJ), could be actively involved in this physiological process.

Results: Electron Microscopy and Light Microscopy images, associated with time-lapse analysis and 3D reconstruction, used at high resolution and enhanced using ImageJ based software analysis, revealed that: i) actin cables, originating from Donor cells, insert on the edge of GJP and contribute to their invagination, giving rise to AGJ, whereas actin cables on the Acceptor cell side of the plaque are not modified; ii) actin cables from the Donor cell are continuous with the actin network present over the entire GJP surface.

View Article and Find Full Text PDF

Background: The objective of the study was to elaborate a conceptual framework related to the domains of patient experience along the cystic fibrosis (CF) journey from the patients and parents of children with CF to inform the design of a patient-reported experience questionnaire.

Method: A collaborative research group including patients and parents with clinicians and academic researchers was set up. They identified the situations along the CF care pathway from diagnosis to paediatric care, transition to adult care and adult follow-up, transfer to transplant centres and follow-up after transplantation.

View Article and Find Full Text PDF

Introduction: In France, the cystic fibrosis (CF) care pathway is coordinated by multidisciplinary teams from specialised CF centres or transplant centres. It includes the care provided at home or out of hospital, risk prevention in daily life and adjustments to social life, which together contribute to the person's quality of life. Patient experience is used to describe and evaluate the care and life of patients living with the disease.

View Article and Find Full Text PDF

Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death.

View Article and Find Full Text PDF

Background: NRD convertase, also termed Nardilysin, is a Zn(++) metalloendopeptidase that specifically cleaves the N-terminus of arginine and lysine residues into dibasic moieties. Although this enzyme was found located within the testis, its function in male reproduction is largely unknown. In addition, the precise distribution of this enzyme within germ cells remains to be determined.

View Article and Find Full Text PDF

Reproductive organs are complex and well-structured tissues essential to perpetuate the species. In mammals, the male and female reproductive organs vary on their organization, morphology and function. Connectivity between cells in such tissues plays pivotal roles in organogenesis and tissue functions through the regulation of cellular proliferation, migration, differentiation and apoptosis.

View Article and Find Full Text PDF

Background Information: Connexins (Cxs), the constitutive proteins of gap junctions, are key actors of many physiological processes. Therefore, alterations of Cx expression and degradation lead to the development of physiopathological disorders. Because of the formation of a double membrane vesicle termed annular gap junction (AGJ), gap junction degradation is a unique physiological process for which many cellular aspects remain unclear.

View Article and Find Full Text PDF

The four related mammalian MEX-3 RNA-binding proteins are evolutionarily conserved molecules for which the in vivo functions have not yet been fully characterized. Here, we report that male mice deficient for the gene encoding Mex3b are subfertile. Seminiferous tubules of Mex3b-deficient mice are obstructed as a consequence of the disrupted phagocytic capacity of somatic Sertoli cells.

View Article and Find Full Text PDF

Gap junction protein connexins (Cxs) play essential roles in cell homeostasis, growth, differentiation and death. Therefore, Cx dysfunction has been associated with many diseases and with tumor development. Cxs control cell apoptosis through different molecular mechanisms.

View Article and Find Full Text PDF

Direct intercellular communication is mediated by gap junctions and their constitutive proteins, the connexins, which are organized in a hexameric arrangement forming a channel between adjacent cells. Connexins are essential for cell homeostasis and are also involved in many physiological processes such as cell growth, differentiation and death. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival and apoptosis, in which one connexin isoform, connexin 43, plays an essential role as evidenced by the targeted genetic deletion of Cx43 gene.

View Article and Find Full Text PDF

Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities.

View Article and Find Full Text PDF

Griseofulvin, a widely used antifungal antimitotic drug has been proposed as an anti-tumoral treatment by way of in vitro experiments. Recently, in vivo demonstration of griseofulvin efficacy against multiple myeloma in mice argues for its potential as therapeutics for cancer. Nevertheless, the molecular mechanisms by which griseofulvin disrupts cancerous cell progression are far from being understood.

View Article and Find Full Text PDF

Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion.

View Article and Find Full Text PDF

Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state.

View Article and Find Full Text PDF

Many recent epidemiological, clinical and experimental findings support the hypothesis that environmental toxicants are responsible for the increasing male reproductive disorders (congenital malformations, declining sperm counts and testicular cancer) over the past 20 years. It has also been reported that exposure to these toxicants, during critical periods of development (fetal and neonatal), represents a more considerable risk for animals and humans than exposure during adulthood. However, the molecular targets for these chemicals have not been clearly identified.

View Article and Find Full Text PDF

A dramatical decline in human male reproductive function has been reported for the past 20 years. Many recent epidemiological, clinical and experimental findings suggest that the reproductive dysfunction could result from prenatal and neonatal chemical compound exposure. Even if numerous studies argue for a relationship between male infertility and environmental and/or occupational exposure, the molecular mechanisms by which these anti-reproductive compounds act are still unclear.

View Article and Find Full Text PDF

Connexins (Cx) are key regulators of cell proliferation, differentiation and apoptosis. Cx trafficking and endocytosis need interactions with a large number of signaling and scaffolding proteins. We demonstrate herein that Cx43-GFP gap junction plaque endocytosis was blocked in cells transfected by the dominant-negative form of dynamin2 (Dyn2K44A) and by dynasore, an inhibitor of dynamin GTPase activity, which reduced the association between dynamin2 and Cx43.

View Article and Find Full Text PDF

Background: An embryo's ability to grow and implant can be improved by selection of a normal spermatozoon with a vacuole-free head. However, large vacuoles in spermatozoa have yet to be fully characterized. The present study aimed to determine whether these vacuoles are of nuclear, membrane and/or acrosomal origin.

View Article and Find Full Text PDF

In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, beta-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO(-/-)) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO(-/-) as compared to Wild-type testes.

View Article and Find Full Text PDF

Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell-cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins.

View Article and Find Full Text PDF

Several studies suggest that exposure to environmental pollutants is partly responsible for testicular pathologies that have considerably increased over the last decades (cryptorchidism, hypospadias, cancer, decrease in the number of ejaculated spermatozoa). However, the cellular and molecular mechanisms involved in this reprotoxicity remain mostly unknown. One of the challenges of the european regulation REACH is to improve the knowledge on the chemical, toxic and ecotoxic properties of substances used in everyday life.

View Article and Find Full Text PDF

Follicle-stimulating hormone (FSH) is required for initiation and maintenance of spermatogenesis, a dynamic process of cell proliferation and maturation. By using FSH-gold particles and pulse-chase experiments, we analyzed the kinetics of FSH endocytosis in Sertoli and germ cells during development. Ultrastructural time-dependent analysis demonstrates that FSH was first located on plasma membrane, before being accumulated within the endosomal compartment, in the early endosomes, identified by morphological criteria and Rab-5 colocalization.

View Article and Find Full Text PDF

The role of gap junctions in proliferation, differentiation and apoptosis has been recently highlighted. Nevertheless, the molecular mechanisms that control these physiological events by acting on gap junction channels are still unknown. We have recently demonstrated that heteromeric gap junction plaques composed by Cx43 and Cx33 are unstable at the cell boundary and are rapidly internalized by endocytosis.

View Article and Find Full Text PDF

Spermatogenesis involves the realization of a particular genetic program which requires a specific environment ("niche"). Multiplication, differentiation and apoptosis of male germ cells are finely regulated by pituitary hormones (mainly LH and FSH), and by a complex network of factors originating from both the somatic cells and the germ cells of the testis. It is becoming clear that hormones and intra-testicular regulatory factors can compensate, at least in part, for the absence of some hormones or factors including FSH and LH or androgen receptors.

View Article and Find Full Text PDF

The potential health impact of pharmaceutical waste is now a growing concern. Contraceptive steroids are prominent environmental contaminants and thus may act as endocrine disruptors. Numerous xenobiotics hamper Sertoli cells junctional communication which is known to participate in spermatogenesis control.

View Article and Find Full Text PDF