Publications by authors named "Segers L"

Background: Alterations in regional brain microcirculation have not been well studied in patients with sepsis. Regional brain microcirculation can be studied using contrast-enhanced brain ultrasound (CEUS) with microbubble administration.

Methods: CEUS was used to assess alterations in regional brain microcirculation on 3 consecutive days in 58 patients with sepsis and within 24 h of intensive care unit admission in 10 aged-matched nonseptic postoperative patients.

View Article and Find Full Text PDF
Article Synopsis
  • - Hypoxia induces various breathing behaviors, notably gasping, which helps improve blood flow and coordination between heart and lungs by altering breathing patterns and pressures in the body.
  • - The study tested if gasps during hypoxia are amplified by a specific circuit in the brain responsible for breathing and if this signal spreads to other areas involved in respiratory control.
  • - Results showed that changes in neuron activity and connectivity in brainstem circuits support the idea that these areas work together to enhance breathing efforts during hypoxia, leading to gasping as a lifesaving reflex.
View Article and Find Full Text PDF

Environmental monitoring is essential for safeguarding the health of our planet and protecting human health and well-being. Without trust, the effectiveness of environmental monitoring and the ability to address environmental challenges are significantly compromised. In this paper, we present a sensor platform capable of performing authenticated and trustworthy measurements, together with a lightweight security protocol for sending the data from the sensor to a central server anonymously.

View Article and Find Full Text PDF

Hypoxia can trigger a sequence of breathing-related behaviors, from tachypnea to apneusis to apnea and gasping, an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypothesis that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and a distributed efference copy mechanism that generates coordinated gasp-like discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from 6 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated adult cats.

View Article and Find Full Text PDF

The computer vision community has paid much attention to the development of visible image super-resolution (SR) using deep neural networks (DNNs) and has achieved impressive results. The advancement of non-visible light sensors, such as acoustic imaging sensors, has attracted much attention, as they allow people to visualize the intensity of sound waves beyond the visible spectrum. However, because of the limitations imposed on acquiring acoustic data, new methods for improving the resolution of the acoustic images are necessary.

View Article and Find Full Text PDF

The respiratory motor pattern is coordinated with cardiovascular system regulation. Inspiratory drive and respiratory phase durations are tuned by blood pressure and baroreceptor reflexes. We hypothesized that perturbations of systemic arterial blood pressure modulate inspiratory drive through a raphe-pontomedullary network.

View Article and Find Full Text PDF

Purpose This systematic review aimed to establish language and speech markers to support the clinical diagnosis of primary progressive aphasia (PPA) and its clinical phenotypes. Our first objective was to identify behavioral language and speech markers of early-stage PPA. Our second objective was to identify the electrophysiological correlates of the language and speech characteristics in PPA.

View Article and Find Full Text PDF

Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain.

View Article and Find Full Text PDF

Swallow-breathing coordination safeguards the lower airways from tracheal aspiration of bolus material as it moves through the pharynx into the esophagus. Impaired movements of the shared muscles or structures of the aerodigestive tract, or disruptions in the interaction of brainstem swallow and respiratory central pattern generators (CPGs) result in dysphagia. To maximize lower airway protection these CPGs integrate respiratory rhythm generation signals and vagal afferent feedback to synchronize swallow with breathing.

View Article and Find Full Text PDF

Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.

View Article and Find Full Text PDF

We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate.

View Article and Find Full Text PDF

We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways.

View Article and Find Full Text PDF

This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.

View Article and Find Full Text PDF

Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea.

View Article and Find Full Text PDF

Developing new sources of organic Se has potential benefit for animal production and human nutrition via animal-based foods enriched in Se. The objectives of this trial were to compare L-selenomethionine with another organic Se source, Se-enriched yeast (SelPlex 2300), and sodium selenite, an inorganic Se source, against a commercial control diet. The effect of source and the dosage of Se supplementation on Se in eggs and blood variables was investigated.

View Article and Find Full Text PDF

Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets.

View Article and Find Full Text PDF

Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy.

View Article and Find Full Text PDF

Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors.

View Article and Find Full Text PDF

Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects.

View Article and Find Full Text PDF

This study investigated the stability of the discharge identity of inspiratory decrementing (I-Dec) and augmenting (I-Aug) neurons in the caudal (cVRC) and rostral (rVRC) ventral respiratory column during repetitive fictive cough in the cat. Inspiratory neurons in the cVRC (n = 23) and rVRC (n = 17) were recorded with microelectrodes. Fictive cough was elicited by mechanical stimulation of the intrathoracic trachea.

View Article and Find Full Text PDF

Ventrolateral respiratory column (VRC) circuits that modulate breathing in response to changes in central chemoreceptor drive are incompletely understood. We employed multielectrode arrays and spike train correlation methods to test predictions of the hypothesis that pre-Bötzinger complex (pre-BötC) and retrotrapezoid nucleus/parafacial (RTN-pF) circuits cooperate in chemoreceptor-evoked tuning of ventral respiratory group (VRG) inspiratory neurons. Central chemoreceptors were selectively stimulated by injections of CO(2)-saturated saline into the vertebral artery in seven decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated cats.

View Article and Find Full Text PDF

We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats.

View Article and Find Full Text PDF

The medullary ventral respiratory column (VRC) of neurons is essential for respiratory motor pattern generation; however, the functional connections among these cells are not well understood. A rostral extension of the VRC, including the retrotrapezoid nucleus/parafacial region (RTN-pF), contains neurons responsive to local perturbations of CO(2)/pH. We addressed the hypothesis that both local RTN-pF interactions and functional connections from more caudal VRC compartments--extending from the Bötzinger and pre-Bötzinger complexes to the ventral respiratory group (Böt-VRG)--influence the respiratory modulation of RTN-pF neurons and their responses to central chemoreceptor and baroreflex activation.

View Article and Find Full Text PDF

Previous models have attributed changes in respiratory modulation of pontine neurons after vagotomy to a loss of pulmonary stretch receptor "gating" of an efference copy of inspiratory drive. Recently, our group confirmed that pontine neurons change firing patterns and become more respiratory modulated after vagotomy, although average peak and mean firing rates of the sample did not increase (Dick et al., J Physiol 586: 4265-4282, 2008).

View Article and Find Full Text PDF

The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not.

View Article and Find Full Text PDF