Publications by authors named "Segaloff D"

Article Synopsis
  • The Concise Guide to PHARMACOLOGY 2023/24 offers a summarized overview of approximately 1800 drug targets and around 6000 interactions with 3900 ligands, mostly in a tabular format.
  • It focuses on selective pharmacology and includes links to an open access knowledgebase for more detailed drug information.
  • The guide divides drug targets into six major categories, providing essential summaries and guidance based on the latest pharmacological data available as of mid-2023, while serving as an official resource by the International Union of Basic and Clinical Pharmacology.
View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to Pharmacology 2021/22 offers a streamlined overview of nearly 1900 human drug targets, focusing on selective pharmacology and organized mainly in tables for quick reference.
  • The guide serves as a reliable, citable resource that distills extensive online content while ensuring it reflects the status as of mid-2021, distinct from ongoing database updates.
  • Key pharmacological targets include G protein-coupled receptors, ion channels, and enzymes, with official nomenclature and references provided to assist further research and understanding.
View Article and Find Full Text PDF

By mediating estrogen synthesis and follicular growth in response to FSH, the ovarian FSH receptor (FSHR) is essential for female fertility. Indeed, ovarian stimulation via administration of FSH to women with infertility is part of the primary therapeutic intervention used in assisted reproductive technology. In physiological and therapeutic contexts, current dogma dictates that once ovulation has occurred, FSH/FSHR signaling is no longer required for successful pregnancy outcomes.

View Article and Find Full Text PDF

It has been shown in both human and mouse placentas that follicle stimulating hormone receptor (FSHR) is expressed in fetal vascular endothelium. There are conflicting reports, however, on the role of FSH to stimulate angiogenesis in vitro in cultured endothelial cells from umbilical veins. Therefore, in this study we undertook an in vivo approach utilizing Fshr null mice to definitively address this question.

View Article and Find Full Text PDF

Testotoxicosis is a rare cause of peripheral precocious puberty in boys caused by constitutively activating mutations of the LHCG receptor. Affected males usually have normal gonadotropin profiles and fertility in their adult life. Here, we described the long-term follow-up of a 24-year-old young man with severe testotoxicosis due to a de novo activating mutation in the third transmembrane helix of the LHCGR (p.

View Article and Find Full Text PDF

Previous studies from our laboratory revealed that the follicle-stimulating hormone receptor (FSHR) is expressed at low levels in nonpregnant human myometrium and that it is up-regulated in pregnant term nonlaboring myometrium; however, the physiological relevance of these findings was unknown. Herein, we examined signaling pathways stimulated by FSH in immortalized uterine myocytes expressing recombinant FSHR at different densities and showed that cAMP accumulation is stimulated in all cases but that inositol phosphate accumulation is stimulated only at high FSHR densities. Because an increase in cAMP quiets myometrial contractile activity but an increase in 1,4,5-triphosphoinositol stimulates contractile activity, we hypothesized that FSHR density dictates whether FSH quiets or stimulates myometrial contractility.

View Article and Find Full Text PDF

We demonstrate 2 novel mutations of the LHCGR, each homozygous, in a 46,XY patient with severe Leydig cell hypoplasia. One is a mutation in the signal peptide (p.Gln18_Leu19ins9; referred to here as SP) that results in an alteration of the coding sequence of the N terminus of the mature mutant receptor.

View Article and Find Full Text PDF

Expression and function of the follicle-stimulating hormone receptor (FSHR) in females were long thought to be limited to the ovary. Here, however, we identify extragonadal FSHR in both the human female reproductive tract and the placenta, and test its physiological relevance in mice. We show that in nonpregnant women FSHR is present on: endothelial cells of blood vessels in the endometrium, myometrium, and cervix; endometrial glands of the proliferative and secretory endometrium; cervical glands and the cervical stroma; and (at low levels) stromal cells and muscle fibers of the myometrium.

View Article and Find Full Text PDF

Context: The FSH receptor (FSHR) is traditionally thought to play a role in female reproductive physiology solely within the context of ovarian FSHR. However, FSHR is also expressed in endothelial cells of the placental vasculature and human umbilical cord vessels, suggesting additional facets of female reproduction regulated by extragonadal FSHR.

Objective: We sought to determine the functional role of FSHR on human umbilical cord endothelial cells (HUVECs), hypothesizing that activation of the FSHR would stimulate angiogenesis.

View Article and Find Full Text PDF

The LH receptor (LHR) and FSH receptor (FSHR) are each G protein-coupled receptors that play critical roles in reproductive endocrinology. Each of these receptors has previously been shown to self-associate into homodimers and oligomers shortly after their biosynthesis. As shown herein using bioluminescence resonance energy transfer to detect protein-protein interactions, our data show that the LHR and FSHR, when coexpressed in the same cells, specifically heterodimerize with each other.

View Article and Find Full Text PDF

The LH receptor (LHR) and FSH receptor (FSHR), collectively termed the gonadotropin receptors, are members of the Family A of GPCRs. The gonadotropin receptors each contain N-linked carbohydrates that are not directly involved in hormone binding, but contribute to the proper folding, and therefore, cell surface expression of the receptor. Loss-of-function mutations of an LHR or FSHR results in decreased target cell responsiveness.

View Article and Find Full Text PDF

The glycoprotein hormone receptors are G protein-coupled receptors containing a large extracellular domain fused to a prototypical serpentine domain. cis-activation occurs when binding of hormone to the extracellular domain stabilizes the serpentine domain in an active conformation. Studies by others suggested that these receptors can also signal by trans-activation, where hormone binding to one receptor protomer activates the serpentine domain of an associated protomer, as documented by the partial rescue of hormone-dependent signaling when a binding defective mutant is coexpressed with a signaling defective mutant.

View Article and Find Full Text PDF

Naturally occurring mutations of G protein-coupled receptors (GPCRs) causing misfolding and failure to traffic to the cell surface can result in disease states. Some small-molecule orthosteric ligands can rescue such misfolded receptors, presumably by facilitating their correct folding and shuttling to the plasma membrane. Here we show that a cell-permeant, allosterically binding small-molecule agonist (Org 42599) rescues the folding and cell surface expression, and therefore target cell signaling, of mutant human luteinizing hormone (LH) receptors (A593P and S616Y) that cause Leydig cell hypoplasia in man.

View Article and Find Full Text PDF

The lutropin receptor (LHR) is a G protein-coupled receptor (GPCR) that mediates the actions of pituitary LH in males and females and that of placental hCG in pregnant women and, therefore, plays an essential role in reproductive physiology. Mutations of the lhcgr gene that result in constitutive activation of the LHR have been shown to be causative of gonadotropin-independent precocious puberty in young boys. Studies on constitutively active mutants (CAMs) of the LHR have been extremely informative in elucidating the roles of the LHR in reproductive physiology as well as in understanding the molecular basis underlying activation of this GPCR.

View Article and Find Full Text PDF

Strong gain-of-function mutations have not been identified in humans in the FSH receptor (FSHR), whereas such mutations are common among many other G protein-coupled receptors. In order to predict consequences of such mutations on humans, we first identified constitutively activated mutants of the mouse (m) Fshr and then expressed them under the human anti-Müllerian hormone promoter in transgenic mice or created knock-in mutation into the mouse genome. We show here that mutations of Asp580 in the mFSHR significantly increase the basal receptor activity.

View Article and Find Full Text PDF

The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr(110) in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q.

View Article and Find Full Text PDF

The D405N and Y546F mutations of the human lutropin receptor (hLHR) have previously been shown to partially attenuate hCG-stimulated cAMP synthesis despite normal cell surface expression and hCG binding affinity (Min, L. and Ascoli, M. Mol.

View Article and Find Full Text PDF

Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N.

View Article and Find Full Text PDF

The follicle stimulating hormone receptor (FSHR) plays a critical role in reproductive function. In the males, FSH supports spermatogenesis, whereas in females, FSH is absolutely required for ovarian follicle growth. In females, inactivating mutations in the FSHR result in ovarian dysgenesis with amenorrhea and infertility.

View Article and Find Full Text PDF

The human lutropin receptor (LHCGR) plays an integral role in male and female reproductive physiology. In response to either placental hCG or pituitary LH, gonadal LHCGR mediates its effects primarily through Gs activation. Heterozygous mutations leading to constitutive activation of the LHCGR cause gonadotropin-independent precocious puberty in males, but have no detectable effects on prepubertal or postpubertal females.

View Article and Find Full Text PDF

The human lutropin receptor (hLHR) and human TSH receptor (hTSHR) are G protein-coupled receptors that play key roles in reproductive and thyroid physiology, respectively. We show using a quantitative assessment of cAMP production as a function of cell surface receptor expression that the hTSHR possesses greater basal constitutive activity than the hLHR. Further studies were undertaken to test the hypothesis that different potential Gs-coupling motifs identified in IL2 of the hTSHR and hLHR contribute to their different basal constitutive activities.

View Article and Find Full Text PDF

In contrast to the human lutropin receptor (hLHR), very few naturally occurring activating mutations of the structurally related human follitropin receptor (hFSHR) have been identified. The present study was undertaken to determine if one aspect underlying this discrepancy might be a general resistance of the hFSHR to mutation-induced constitutive activity. Five different mutations were introduced into both the hLHR and hFSHR (four based on activating mutations of the hLHR gene, one based on an activating mutation of the hFSHR gene).

View Article and Find Full Text PDF

Context: Rare activating mutations of the human (h)FSHR have been reported in some women with spontaneous ovarian hyperstimulation in pregnancy, where follicular growth is inappropriately stimulated by elevated concentrations of human chorionic gonadotropin acting through the hFSHR. It is not known whether ovarian hyperstimulation in peripubertal girls with untreated primary hypothyroidism is caused by hFSHR mutations and/or influenced by hFSHR allelic variants, rendering the hFSHR more sensitive to circulating TSH.

Objective: The aim of the study was to determine whether mutations of the hFSHR and/or hFSHR allelic variants are associated with greater sensitivity of the hFSHR to TSH.

View Article and Find Full Text PDF

Objective: To investigate the role of mutations or polymorphisms in the NPY-Y1R gene in human idiopathic central pubertal disorders.

Design: Molecular studies.

Setting: University hospital.

View Article and Find Full Text PDF

The L457(3.43)R mutation of the hLHR was initially identified in a Brazilian boy with gonadotropin-independent precocious puberty. As would be expected, L457(3.

View Article and Find Full Text PDF