Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a transposon insertion mutant library comprising 5,746 strains.
View Article and Find Full Text PDFAntibody-drug Conjugates (ADCs) are a powerful therapeutic modality for cancer treatment. ADCs are multi-functional biologics in which a disease-targeting antibody is conjugated to an effector payload molecule via a linker. The success of currently used ADCs has been largely attributed to the development of linker systems, which allow for the targeted release of cytocidal payload drugs inside cancer cells.
View Article and Find Full Text PDFDNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS.
View Article and Find Full Text PDFNucleic Acids Res
September 2023
Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new molecular tools to survive one another. To protect their genomic DNA from restriction enzymes, the most common bacterial defence systems, double-stranded DNA phages have evolved complex modifications that affect all four bases. This study focuses on modifications at position 7 of guanines.
View Article and Find Full Text PDFEnzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction.
View Article and Find Full Text PDFMosquito control by personal protection is one of the most efficient ways of curtailing deadly diseases such as malaria and dengue with the potential to save millions of lives per year. DEET (,-diethyl-3-methyl benzamide) is currently considered as the gold standard for mosquito repellents, being used for the past several decades. Control by DEET, however, is being threatened by emerging resistance among mosquitoes.
View Article and Find Full Text PDFPeptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely N -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinase 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore.
View Article and Find Full Text PDFPeptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa-Xaa tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the COOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH.
View Article and Find Full Text PDFAlthough the basic process of receptor-mediated endocytosis (RME) is well established, certain specific aspects, like the endosomal redox state, remain less characterized. Previous studies used chemically labeled ligands or antibodies with a FRET (fluorescence resonance energy transfer) probe to gauge the redox activity of the endocytic pathway with a limitation being their inability to track the apo receptor. New tools that allow direct labeling of a cell surface receptor with synthetic probes would aid in the study of its endocytic pathway and function.
View Article and Find Full Text PDFAmong the >120 modified ribonucleosides in the prokaryotic epitranscriptome, many tRNA modifications are critical to bacterial survival, which makes their synthetic enzymes ideal targets for antibiotic development. Here we performed a structure-based design of inhibitors of tRNA-(NG37) methyltransferase, TrmD, which is an essential enzyme in many bacterial pathogens. On the basis of crystal structures of TrmDs from and , we synthesized a series of thienopyrimidinone derivatives with nanomolar potency against TrmD in vitro and discovered a novel active site conformational change triggered by inhibitor binding.
View Article and Find Full Text PDFA previously undescribed reaction involving the formation of a thiazolidin-5-imine linkage was developed for bioconjugation. Being highly specific and operating in aqueous media, this simple condensation reaction is used to chemoselectively label peptides, proteins, and living cells under physiological conditions without the need to use toxic catalysts or reducing reagents.
View Article and Find Full Text PDF