Contextual fear conditioning is a classical laboratory task that tests associative memory formation and recall. Techniques such as multi-photon microscopy and holographic stimulation offer tremendous opportunities to understand the neural underpinnings of these memories. However, these techniques generally require animals to be head-fixed.
View Article and Find Full Text PDFSpatial memory in the hippocampus involves dynamic neural patterns that change over days, termed representational drift. While drift may aid memory updating, excessive drift could impede retrieval. Memory retrieval is influenced by reward expectation during encoding, so we hypothesized that diminished reward expectation would exacerbate representational drift.
View Article and Find Full Text PDFSpatial memories are represented by hippocampal place cells during navigation. This spatial code is dynamic, undergoing changes across time, known as representational drift, and across changes in internal state, even while navigating the same spatial environment with consistent behavior. A dynamic code may provide the hippocampus a means to track distinct epochs of experience that occur at different times or during different internal states and update spatial memories.
View Article and Find Full Text PDFThe adaptive regulation of fear memories is a crucial neural function that prevents inappropriate fear expression. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic nucleus reuniens (NR) is necessary to extinguish contextual fear and innervates hippocampal CA1.
View Article and Find Full Text PDFMemory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1.
View Article and Find Full Text PDFMemory retrieval of fearful experiences is essential for survival but can be maladaptive if not appropriately suppressed. Fear memories can be acquired through contextual fear conditioning (CFC) which relies on the hippocampus. The thalamic subregion Nucleus Reuniens (NR) is necessary for contextual fear extinction and strongly projects to hippocampal subregion CA1.
View Article and Find Full Text PDFPsychopharmacology (Berl)
November 2023
Rationale: Translational research, especially research that bridges studies with humans and nonhuman species, is critical to advancing our understanding of human disorders such as addiction. This advancement requires reliable and rigorous models to study the underlying constructs contributing to the maladaptive behavior.
Objective: In this commentary, we address some of the challenges of conducting translational research by examining a single procedure, place conditioning.
Hippocampal place cells support reward-related spatial memories by forming a cognitive map that over-represents reward locations. The strength of these memories is modulated by the extent of reward expectation during encoding. However, the circuit mechanisms underlying this modulation are unclear.
View Article and Find Full Text PDFIn the interest of advocating for the postdoctoral community in the United States (US), we compared the results of surveys of postdocs carried out in 2019 and in late 2020. We found that respondents' mental health and wellness were significantly impacted by the pandemic irrespective of their gender, race, citizenship, or other identities. Career trajectories and progression were also affected, as respondents reported being less confident about achieving career goals, and having more negative perceptions of the job market compared to before the pandemic.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2021
Background: Detection of predator cues changes the brain state in prey species and helps them avoid danger. Dysfunctionality in changing the central state appropriately in stressful situations is proposed to be an underlying cause of multiple psychiatric disorders in humans.
Methods: Here, we investigate the dynamics of neural circuits mediating response to a threat, to characterize these states and to identify potential control networks.
Toxicol Appl Pharmacol
February 2020
Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or 28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA).
View Article and Find Full Text PDFIn an effort to control and eventually eliminate malaria, the development of transmission-blocking vaccines has long been sought. However, few antigens have been evaluated in clinical trials, often due to limitations in the expression and purification of the antigen in sufficient yield and quality. Pfs230, a surface antigen of gametocytes, has recently advanced to clinical evaluation as a conjugate vaccine using the Pseudomonas aeruginosa exoprotein A carrier protein.
View Article and Find Full Text PDFBackground: Neural activity in the vertebrate habenula is affected by ambient illumination. The nucleus that links photoreceptor activity with the habenula is not well characterized. Here, we describe the location, inputs and potential function of this nucleus in larval zebrafish.
View Article and Find Full Text PDFBackground: Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay.
View Article and Find Full Text PDFNeural circuits are non-linear dynamical systems that transform information based on the pattern of input, current state and functional connectivity. To understand how a given stimulus is processed, one would ideally record neural activity across the entire brain of a behaving animal, at cellular or even subcellular resolution, in addition to characterizing anatomical connectivity. Given their transparency and relatively small size, larval zebrafish provide a powerful system for brain-wide monitoring of neural activity.
View Article and Find Full Text PDFSerotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator.
View Article and Find Full Text PDFBackground: The habenula consists of an evolutionarily conserved set of nuclei that control neuromodulator release. In lower vertebrates, the dorsal habenula receives innervation from sensory regions, but the significance of this is unclear. Here, we address the role of the habenula in olfaction by imaging neural activity in larval zebrafish expressing GCaMP3 throughout the habenula and by carrying out behavioral assays.
View Article and Find Full Text PDF