Publications by authors named "Seenivasan Rajesh"

Rapid, on-site detection of fentanyl is of critical importance, as it is an extremely potent synthetic opioid that is prone to abuse. Here we describe a wearable glove-based sensor that can detect fentanyl electrochemically on the fingertips towards decentralized testing for opioids. The glove-based sensor consists of flexible screen-printed carbon electrodes modified with a mixture of multiwalled carbon nanotubes and a room temperature ionic liquid, 4-(3-butyl-1-imidazolio)-1-butanesulfonate).

View Article and Find Full Text PDF

We have successfully integrated techniques for controlling cell adhesion and performing electrochemical differential pulse voltammetry (DPV) through the use of digitally controlled microfluidics and patterned transparent indium tin oxide electrode arrays to enable rapid and sensitive enumeration of cancer cells in a scalable microscale format. This integrated approach leverages a dual-working electrode (WE) surface to improve the specificity of the detection system. Here, one of the WE surfaces is functionalized with anti-Melanocortin 1 Receptor antibodies specific to melanoma cancer cells, while the other WE acts as a control (i.

View Article and Find Full Text PDF

Chemotherapeutic dosing, is largely based on the tolerance levels of toxicity today. Molecular imaging strategies can be leveraged to quantify DNA cytotoxicity and thereby serve as a theranostic tool to improve the efficacy of treatments. Methoxyamine-modified cyanine-7 (Cy7MX) is a molecular probe which binds to apurinic/apyrimidinic (AP)-sites, inhibiting DNA-repair mechanisms implicated by cytotoxic chemotherapies.

View Article and Find Full Text PDF

Superoxide dismutases (SODs), a family of ubiquitous enzymes, provide essential protection to biological systems against uncontrolled reactions with oxygen- and nitrogen- based radical species. We review first the role of SODs in oxidative stress and the other biological functions such as peroxidase, nitrite oxidase, thiol oxidase activities etc., implicating its role in neurodegenerative, cardiovascular diseases, and ageing.

View Article and Find Full Text PDF

An optically transparent patterned indium tin oxide (ITO) three-electrode sensor integrated with a microfluidic channel was designed for label-free immunosensing of prostate-specific membrane antigen (PSMA), a prostate cancer (PCa) biomarker, expressed on prostate tissue and circulating tumor cells but also found in serum. The sensor relies on cysteamine capped gold nanoparticles (N-AuNPs) covalently linked with anti-PSMA antibody (Ab) for target specificity. A polydimethylsiloxane (PDMS) microfluidic channel is used to efficiently and reproducibly introduce sample containing soluble proteins/cells to the sensor.

View Article and Find Full Text PDF

Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e.

View Article and Find Full Text PDF

We synthesized cysteine-functionalized graphene oxide (sGO) using carbonyldiimidazole as a cross-linker via amide and carbamate linkages. The sGO/polypyrrole (PPy) nanocomposite film was grown on the working electrode surface of a screen-printed electrode (SPE) via controlled one-step electrochemical deposition. The sGO/PPy-SPE was used to detect lead ions (Pb(2+)) in water by first depositing Pb(2+) on the working electrode surface for 10 min at -1.

View Article and Find Full Text PDF

An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample.

View Article and Find Full Text PDF

An electrochemical NO(x) sensor was fabricated based on the incorporation of hemin on a ZnO-PPy nanocomposite modified Pt electrode. Scanning electron microscopy, energy dispersive X-ray analysis and cyclic voltammetry were used to confirm the successful stepwise assembly procedure for the sensor. The electrocatalytical behavior of the sensor was investigated by cyclic voltammetry.

View Article and Find Full Text PDF

Dopamine (3,4-dihydroxyphenylethylamine, DA), an important neurotransmitter, exists in the cell bodies of the dopaminergic neurons of the substantia nigra. Oxidation of DA to its quinone and subsequent reaction with Adenine and Guanine in DNA result in the formation of depurinating adducts, thus causing DNA damage. In this article, we investigate the interaction of quinone metabolites of dopamine (DMQ) with models representing the structure of DNA using dispersion corrected density functional theory with an aim to evaluate the associated structural changes in DNA upon their interaction.

View Article and Find Full Text PDF

A highly sensitive NO(x) sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry.

View Article and Find Full Text PDF

A novel highly sensitive biosensor for the direct and simultaneous determination of superoxide anion radical (O2-) and nitrite (NO2-) was developed by incorporation of carbon nanotube (CNT) solubilized in nafion in polypyrrole (PPy) matrix on Pt electrode followed by immobilization of Cu,ZnSOD (SOD1) on it. The CNT/PPy nanocomposite electrode enhanced the immobilization of SOD1 and promoted the electron transfer of SOD1 minimizing its fouling effect. The surface morphological images of PPy and CNT-PPy nanocomposite on Pt electrode were obtained by scanning electron microscopy exhibiting highly microporous structures.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how a compound called MnTMPyP affects mitochondrial function during kidney injury caused by restricted blood flow and subsequent restoration, known as renal ischemia-reperfusion injury (IRI).
  • Results indicated that MnTMPyP helped preserve important mitochondrial activities and structures during the early stages of reperfusion, indicating a protective role.
  • Additionally, after 24 hours of reperfusion, MnTMPyP effectively reduced cell death (apoptosis) by blocking a key enzyme, supporting its potential as a therapeutic agent in renal IRI.
View Article and Find Full Text PDF