Publications by authors named "Seema Nathwani"

A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a β-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds and , with IC values in the range 10-33 nM.

View Article and Find Full Text PDF

Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment.

View Article and Find Full Text PDF

Antimitotic drugs that target tubulin are among the most widely used chemotherapeutic agents; however, the development of multidrug resistance has limited their clinical activity. We report the synthesis and biological properties of a series of novel 3-chloro-β-lactams and 3,3-dichloro-β-lactams (2-azetidinones) that are structurally related to the tubulin polymerisation inhibitor and vascular targeting agent, Combretastatin A-4. These compounds were evaluated as potential tubulin polymerisation inhibitors and for their antiproliferative effects in breast cancer cells.

View Article and Find Full Text PDF

We report the synthesis and biochemical evaluation of compounds that are designed as hybrids of the microtubule targeting benzophenone phenstatin and the aromatase inhibitor letrozole. A preliminary screening in estrogen receptor (ER)-positive MCF-7 breast cancer cells identified 5-((2-1,2,3-triazol-1-yl)(3,4,5-trimethoxyphenyl)methyl)-2-methoxyphenol as a potent antiproliferative compound with an IC value of 52 nM in MCF-7 breast cancer cells (ER+/PR+) and 74 nM in triple-negative MDA-MB-231 breast cancer cells. The compounds demonstrated significant G/M phase cell cycle arrest and induction of apoptosis in the MCF-7 cell line, inhibited tubulin polymerisation, and were selective for cancer cells when evaluated in non-tumorigenic MCF-10A breast cells.

View Article and Find Full Text PDF

A series of novel 1,4-diaryl-2-azetidinone analogues of combretastatin A-4 (CA-4) have been designed, synthesised and evaluated in vitro for antiproliferative activity, antiapoptotic activity and inhibition of tubulin polymerisation. Glucuronidation of CA-4 by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) has been identified as a mechanism of resistance in cancer cells. Potential sites of ring B glucuronate conjugation are removed by replacing the B ring meta-hydroxy substituent of selected series of β-lactams with alternative substituents e.

View Article and Find Full Text PDF

Microtubules are a validated clinical target for the treatment of many cancers. We describe the design, synthesis, biochemical evaluation, and molecular modelling studies of a series of analogues of the microtubule-destabilising agent, combretastatin A-4 (CA-4). Our series of 33 novel compounds contain the CA-4 core structure with modifications to the stilbene linking group, and are predominantly piperazine derivatives.

View Article and Find Full Text PDF

Microtubule-targeted drugs are essential chemotherapeutic agents for various types of cancer. A series of 3-vinyl-β-lactams (2-azetidinones) were designed, synthesized and evaluated as potential tubulin polymerization inhibitors, and for their antiproliferative effects in breast cancer cells. These compounds showed potent activity in MCF-7 breast cancer cells with an IC value of 8 nM for compound 4-[3-Hydroxy-4-methoxyphenyl]-1-(3,4,5-trimethoxyphenyl)-3-vinylazetidin-2-one) which was comparable to the activity of Combretastatin A-4.

View Article and Find Full Text PDF

Purpose The combretastatins (CAs) are known to exhibit anti-tumour activity but the underlying mechanism remains to be fully elucidated. Inflammation plays a critical role in altering the function of cancer cells and evasion of cell death and increased proliferation are characteristics of transformed malignancies. Many of the proteins involved in these pathways are regulated by the transcription factor NF-κB which can be activated by tumour necrosis factor (TNF-α), a pro-inflammatory cytokine released by both malignant and immune cells within the tumour microenvironment.

View Article and Find Full Text PDF

Glucuronidation by uridine 5-diphosphoglucuronosyl transferase enzymes (UGTs) is a cause of intrinsic drug resistance in cancer cells. Glucuronidation of combretastatin A-4 (CA-4) was previously identified as a mechanism of resistance in hepatocellular cancer cells. Herein, we propose chemical manipulation of β-lactam bridged analogues of Combretastatin A-4 as a novel means of overcoming drug resistance associated with glucuronidation due to the expression of UGTs in the CA-4 resistant human colon cancer HT-29 cells.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID).

View Article and Find Full Text PDF

Piperlongumine (piplartine, 1) is a small molecule alkaloid that is receiving intense interest due to its antiproliferative and anticancer activities. We investigated the effects of 1 on tubulin and microtubules. Using both an isolated tubulin assay, and a combination of sedimentation and western blotting, we demonstrated that 1 is a tubulin-destabilising agent.

View Article and Find Full Text PDF

Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g).

View Article and Find Full Text PDF

Structure-activity relationships for a series of 3-phenoxy-1,4-diarylazetidin-2-ones were investigated, leading to the discovery of a number of potent antiproliferative compounds, including trans-4-(3-hydroxy-4-methoxyphenyl)-3-phenoxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (78b) and trans-4-(3-amino-4-methoxyphenyl)-3-phenoxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (90b). X-ray crystallography studies indicate the potential importance of the torsional angle between the 1-phenyl "A" ring and 4-phenyl "B" ring for potent antiproliferative activity and that a trans configuration between the 3-phenoxy and 4-phenyl rings is generally optimal. These compounds displayed IC50 values of 38 and 19 nM, respectively, in MCF-7 breast cancer cells, inhibited the polymerization of isolated tubulin in vitro, disrupted the microtubular structure in MCF-7 cells as visualized by confocal microscopy, and caused G2/M arrest and apoptosis.

View Article and Find Full Text PDF

Some compounds of a series of novel pyrrolo-1,5-benzoxa(thia)zepine, a well-known group of tubulin targeting agents, display anti-tumor effects mainly inducing cell cycle arrest and apoptosis in several human cancer models. A member of this family, pyrrolo-1,5-benzoxazepine-15 (PBOX-15), has previously shown potent pro-apoptotic activity in a variety of human tumor cell types, with minimal toxicity toward normal blood and bone marrow cells. In this study, we evaluated the PBOX-15-mediated effects in human colorectal cancer cell (CRC) lines, DLD-1 and HT-29.

View Article and Find Full Text PDF

Twelve novel β-lactams were synthesized and their antiproliferative effects and binding affinity for the predominant isoforms of the estrogen receptor (ER), ERα and ERβ, were determined. β-Lactams 23 and 26 had the strongest binding affinities for ERα (IC50 values: 40 and 8 nM, respectively) and ERβ (IC50 values: 19 and 15 nM). β-Lactam 26 was the most potent in antiproliferative assays using MCF-7 breast cancer cells, and further biochemical analysis showed that it caused accumulation of cells in G2/M phase (mitotic blockade) and depolymerization of tubulin in MCF-7 cells.

View Article and Find Full Text PDF

An emerging new class of targeted therapeutic molecules against the enzyme fatty acid amide hydrolase (FAAH) is a novel series of pyrrolo-1,5-benzoxa(thia)zepine compounds. A member of this family, pyrrolo-1,5-benzoxazepine-15 (PBOX-15), is a tubulin depolymerizing agent displaying a proapoptotic activity in a variety of human tumor cell types, including those derived from both solid and hematological malignancies, with minimal toxicity towards normal blood and bone marrow cells. In this study, we evaluated the PBOX-15-mediated effects in human colorectal cancer cell (CRC) lines.

View Article and Find Full Text PDF

The synthesis and antiproliferative activity of a new series of rigid analogues of combretastatin A-4 are described which contain the 1,4-diaryl-2-azetidinone (β-lactam) ring system in place of the usual ethylene bridge present in the natural combretastatin stilbene products. These novel compounds are also substituted at position 3 of the β-lactam ring with an aryl ring. A number of analogues showed potent nanomolar activity in human MCF-7 and MDA-MB-231 breast cancer cell lines, displayed in vitro inhibition of tubulin polymerization, and did not cause significant cytotoxicity in normal murine breast epithelial cells.

View Article and Find Full Text PDF

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4.

View Article and Find Full Text PDF