Publications by authors named "Seema Namboori"

Synaptogenesis involves the transformation of dendritic filopodial contacts into stable connections with the exact apposition of synaptic components. Signalling triggered by Wnt/β-catenin and calcium has been postulated to aid this process. However, it is unclear how such a signalling process orchestrates synapse formation to organise the spatial arrangement of synapses along dendrites.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons (MNs). There are no effective treatments and patients usually die within 2-5 years of diagnosis. Emerging commonalities between familial and sporadic cases of this complex multifactorial disorder include disruption to RNA processing and cytoplasmic inclusion bodies containing TDP-43 and/or FUS protein aggregates.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age.

View Article and Find Full Text PDF

Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs.

View Article and Find Full Text PDF

The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development.

View Article and Find Full Text PDF

Several transcription factors (TFs) have been implicated in neuroectoderm (NE) development, and recently, the TF PAX6 was shown to be critical for human NE specification. However, microRNA networks regulating human NE development have been poorly documented. We hypothesized that microRNAs activated by PAX6 should promote NE development.

View Article and Find Full Text PDF

The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway.

View Article and Find Full Text PDF

The Methanococcus maripaludis MMP0352 protein belongs to an oxidoreductase family that has been proposed to catalyze the NAD(+)-dependent oxidation of the 3'' position of uridine diphosphate N-acetyl-D-glucosamine (UDP-GlcNAc), forming a 3-hexulose sugar nucleotide. The heterologously expressed MMP0352 protein was purified and shown to efficiently catalyze UDP-GlcNAc oxidation, forming one NADH equivalent. This enzyme was used to develop a fixed endpoint fluorometric method to analyze UDP-GlcNAc.

View Article and Find Full Text PDF

Archaea and eukaryotes share a dolichol phosphate-dependent system for protein N-glycosylation. In both domains, the acetamido sugar N-acetylglucosamine (GlcNAc) forms part of the core oligosaccharide. However, the archaeal Methanococcales produce GlcNAc using the bacterial biosynthetic pathway.

View Article and Find Full Text PDF

In order to bridge the gap between proteins with three-dimensional (3-D) structural information and those without 3-D structures, extensive experimental and computational efforts for structure recognition are being invested. One of the rapid and simple computational approaches for structure recognition makes use of sequence profiles with sensitive profile matching procedures to identify remotely related homologous families. While adopting this approach we used profiles that are generated from structure-based sequence alignment of homologous protein domains of known structures integrated with sequence homologues.

View Article and Find Full Text PDF

The sequencing of the Mycobacterium tuberculosis (MTB) H37Rv genome has facilitated deeper insights into the biology of MTB, yet the functions of many MTB proteins are unknown. We have used sensitive profile-based search procedures to assign functional and structural domains to infer functions of gene products encoded in MTB. These domain assignments have been made using a compendium of sequence and structural domain families.

View Article and Find Full Text PDF