Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically.
View Article and Find Full Text PDFDespite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval.
View Article and Find Full Text PDFDrug Discov Today
February 2024
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair.
View Article and Find Full Text PDFIntroduction: Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses.
View Article and Find Full Text PDFThreats of radiological or nuclear disasters are of serious concern and a top priority for government agencies involved in domestic security and public health preparedness. There is a need for sensitive bioassays for biodosimetric assessments of radiation exposures originating from unanticipated nuclear/radiological events. The Food and Drug Administration Animal Rule approval pathway requires an in-depth understanding of the mechanisms of radiation injury, drug efficacy and biomarkers for radiation medical countermeasure approval.
View Article and Find Full Text PDFBackground: Animal models are vital for the development of radiation medical countermeasures for the prophylaxis or treatment of acute radiation syndrome and for the delayed effects of acute radiation exposure. Nonhuman primates (NHPs) play an important role in the regulatory approval of such agents by the United States Food and Drug Administration following the Animal Rule. Reliance on such animal models requires that such models are well characterized.
View Article and Find Full Text PDFIntroduction: The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS).
View Article and Find Full Text PDFThere is a need to develop and deploy medical countermeasures (MCMs) in order to support astronauts during space missions against excessive exposures to ionizing radiation exposure. The radiation environment of extraterrestrial space is complex and is characterized by nearly constant fluences of elemental atomic particles (protons being a dominant particle type) with widely different energies and ionization potentials. Chronic exposure to such ionizing radiation carries both near- and long-term health risks, which are generally related to the relative intensity and duration of exposure.
View Article and Find Full Text PDFExpert Opin Drug Discov
August 2022
Introduction: The high attrition rate during drug development remains a challenge that costs a significant amount of time and money. Improving the probabilities of success during the early stages of radiation medical countermeasure (MCM) development for approval by the United States Food and Drug Administration (US FDA) following the Animal Rule will reduce this burden.
Area Covered: This article focuses on new technologies involving various organ-on-chip platforms.
Detonation of an improvised nuclear weapon, or a radiological dispersal device by terrorists, or an unintended radiological/nuclear accident in populated areas would result in a mass casualty scenario with radiation exposures of different severities. Such incidences are perceived as national security threats of major consequences. Acute radiation syndrome (ARS) is triggered by an exposure to a high dose of penetrating ionizing radiation during a short time window.
View Article and Find Full Text PDFPurpose: The intent of this article is to report the status of some of the pharmaceuticals currently in late stage development for possible use for individuals unwantedly and acutely injured as a result of radiological/nuclear exposures. The two major questions we attempt to address here are: (a) What medicinals are currently deemed by regulatory authorities (US FDA) to be safe and effective and are being stockpiled? (b) What additional agents might be needed to make the federal/state/local medicinal repositories more robust and useful in effectively managing contingencies involving radiation overexposures?
Conclusions: A limited number (precisely four) of medicinals have been deemed safe and effective, and are approved by the US FDA for the 'hematopoietic acute radiation syndrome (H-ARS).' These agents are largely recombinant growth factors (e.
To date, the United States Food and Drug Administration (FDA) has approved four drugs to mitigate hematopoietic acute radiation syndrome and all four are repurposed radiomitigators. There are several additional drug candidates currently under evaluation that may also be helpful for use during a widespread emergency. One possible candidate is Ex-Rad, also known as ON01210, a chlorobenzyl sulfone derivative (organosulfur compound), which is a novel, small-molecule kinase inhibitor with demonstrated efficacy in the murine model.
View Article and Find Full Text PDFThe increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available.
View Article and Find Full Text PDFIntroduction: There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses.
Areas Covered: This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation.
Drug Discov Today
January 2021
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues.
View Article and Find Full Text PDFAcute exposure to high-dose ionizing irradiation has the potential to severely injure the hematopoietic system and its capacity to produce vital blood cells that innately serve to ward off infections and excessive bleeding. Developing a medical radiation countermeasure that can protect individuals from the damaging effects of irradiation remains a significant, unmet need and an area of great public health interest and concern. Despite significant advancements in the field of radiation countermeasure development to find a nontoxic and effective prophylactic agent for acute radiation syndrome, no such drug has yet been approved by the Food and Drug Administration.
View Article and Find Full Text PDFIntroduction: There are no radioprotectors currently approved by the United States Food and Drug Administration (US FDA) for either the hematopoietic acute radiation syndrome (H-ARS) or for the acute radiation gastrointestinal syndrome (GI-ARS). There are currently, however, three US FDA-approved medicinals that serve to mitigate acute irradiation-associated hematopoietic injury.
Area Covered: We present the current status of a promising radiation countermeasure, BIO 300 (a genistein-based agent), that has been extensively investigated in murine models of H-ARS and models of the delayed effects of acute radiation exposure (DEARE) and is currently being evaluated in large animal models.
Expert Opin Pharmacother
February 2020
: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed.
View Article and Find Full Text PDFAlthough multiple radioprotectors are currently being investigated preclinically for efficacy and safety, few studies have investigated concomitant metabolic changes. This study examines the effects of amifostine on the metabolic profiles in tissues of mice exposed to cobalt-60 total-body gamma-radiation. Global metabolomic and lipidomic changes were analyzed using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in bone marrow, jejunum, and lung samples of amifostine-treated and saline-treated control mice.
View Article and Find Full Text PDFExpert Opin Drug Saf
November 2019
: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA). : Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects.
View Article and Find Full Text PDF