Publications by authors named "Seeck O"

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam.

View Article and Find Full Text PDF

The ordering structures of non-polar carbon tetrachloride liquid compressed to nano-scales between parallel substrates is studied in this work. The theoretical considerations show that the potential well formed by the confined parallel substrates induces orientational ordering of non-polar molecules. Through molecular dynamic (MD) simulations, the relations between various ordered structures of a non-polar liquid (carbon tetrachloride) and the confined gap size are demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • PETRA III at DESY is a top-notch synchrotron radiation source, delivering powerful X-rays for a variety of scientific experiments across many fields.
  • It currently operates 25 specialized beamlines and has a storage-ring energy of 6 GeV.
  • The planned PETRA IV upgrade will increase brightness significantly, making it an advanced tool for studying biological, chemical, and physical processes, addressing major global challenges.
View Article and Find Full Text PDF

Penetrating, high-energy synchrotron X-rays are in strong demand, particularly for high-pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high-energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front-end components and beam characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • The self-assembly of nanoparticles into ordered structures is significantly affected by the particle size and shape, with larger polydispersity often leading to poor crystallization.
  • Researchers studied rounded cubic maghemite nanoparticles to observe their self-assembly into three-dimensional mesocrystals using various X-ray techniques.
  • Findings show that individual mesocrystals exhibit a much smaller size dispersity compared to the initial nanoparticle dispersion, indicating a selective process during self-assembly, which influences their structural properties.
View Article and Find Full Text PDF

Nanoporous media exhibit structures significantly smaller than the wavelengths of visible light and can thus act as photonic metamaterials. Their optical functionality is not determined by the properties of the base materials, but rather by tailored, multiscale structures, in terms of precise pore shape, geometry, and orientation. Embedding liquid crystals in pore space provides additional opportunities to control light-matter interactions at the single-pore, meta-atomic scale.

View Article and Find Full Text PDF

Copper thiourea complexes are an important material class for application as a precursor of copper sulfide nanocrystals with potential use in solar cells, optoelectronics, medicine, They represent a type of single source precursor, comprising both copper and sulfur in one chemical compound, whose tunable stoichiometry and morphology enable control of the quality and properties of the synthesized copper sulfide nanocrystals. Here, we present a template free electrochemical route to prepare nanowires of copper thiourea (tu) chloride hemihydrate ([Cu(tu)]Cl·½HO) by pulse deposition. We proposed the model of the growth of nanowires.

View Article and Find Full Text PDF

Films of carbon tetrachloride (CCl) confined in slit geometry between two flat diamond substrates down to a few tens of Angstroms are studied by combining X-ray reflectivity with in-plane and out-of-plane X-ray scattering. The confined films form a heterogeneous structure with coexisting regions of liquid and crystalline phases. The liquid phase shows short-range ordering normal to the surfaces of the substrates.

View Article and Find Full Text PDF

The PETRA IV project aims at upgrading the present synchrotron radiation source PETRA III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10 keV, PETRA IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology.

View Article and Find Full Text PDF

Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations.

View Article and Find Full Text PDF

A method has been developed to stabilize and transfer nanofilms of functional organic semiconductors. The method is based on crosslinking of their topmost layers by low energy electron irradiation. The films can then be detached from their original substrates and subsequently deposited onto new solid or holey substrates retaining their structural integrity.

View Article and Find Full Text PDF

A new method for fast x-ray reflectivity data acquisition is presented. The method is based on a fast rotating, slightly tilted sample reflecting to a stationary mounted position sensitive detector and it allows for measurements of reflectivity curves in a quarter of a second. The resolution in q-space mainly depends on the beam properties and the pixel size of the detector.

View Article and Find Full Text PDF

We report on a high resolution x-ray diffraction study unveiling the effect of carriers optically injected into (In,Ga)As quantum dots on the surrounding GaAs crystal matrix. We find a tetragonal lattice expansion with enhanced elongation along the [001] crystal axis that is superimposed on an isotropic lattice extension. The isotropic contribution arises from excitation induced lattice heating as confirmed by temperature dependent reference studies.

View Article and Find Full Text PDF

Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile.

View Article and Find Full Text PDF

Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research.

View Article and Find Full Text PDF

X-ray reflectivity measurements of increasingly more complex interfaces involving silicon (001) substrates reveal the existence of a thin low-density layer intruding between the single-crystalline silicon and the amorphous native SiO2 terminating it. The importance of accounting for this layer in modeling silicon/liquid interfaces and silicon-supported monolayers is demonstrated by comparing fits of the measured reflectivity curves by models including and excluding this layer. The inclusion of this layer, with 6-8 missing electrons per silicon unit cell area, consistent with one missing oxygen atom whose bonds remain hydrogen passivated, is found to be particularly important for an accurate and high-resolution determination of the surface normal density profile from reflectivities spanning extended momentum transfer ranges, now measurable at modern third-generation synchrotron sources.

View Article and Find Full Text PDF

Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations.

View Article and Find Full Text PDF

A setup has been designed to investigate thin films of confined liquids with the use of X-ray scattering methods. The confinement is realized between the flat culets of a pair of diamonds by positioning and orienting the lower diamond with nanometer and micro radian accuracy. We routinely achieve gaps between 5 and 50 nm at culet diameters of 200 μm.

View Article and Find Full Text PDF

The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability.

View Article and Find Full Text PDF

Strain engineering and the crystalline quality of semiconductor nanostructures are important issues for electronic and optoelectronic devices. We report on defect-free SiGe island arrays resulting from Ge coverages of up to 38 monolayers grown on prepatterned Si(001) substrates. This represents a significant expansion of the parameter space known for the growth of perfect island arrays.

View Article and Find Full Text PDF

Crystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg.

View Article and Find Full Text PDF

We present investigations on the strain properties of silicon capping layers on top of regular SiGe island arrays, in dependence on the Si-layer thickness. Such island arrays are used as stressors for the active channel in field-effect transistors where the desired tensile strain in the Si channel is a crucial parameter for the performance of the device. The thickness of the Si cap was varied from 0 to 30 nm.

View Article and Find Full Text PDF

A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

View Article and Find Full Text PDF

The new third-generation synchrotron radiation source PETRA III located at the Deutsches Elektronen-Synchrotron DESY in Hamburg, Germany, has been operational since the second half of 2009. PETRA III is designed to deliver hard X-ray beams with very high brilliance. As one of the first beamlines of PETRA III the high-resolution diffraction beamline P08 is fully operational.

View Article and Find Full Text PDF

Thin films of PbTiO3, a classical ferroelectric, have been grown under tensile strain on single-crystal substrates of DyScO3. The films, of only 5 nm thickness, grow fully coherent with the substrate, as evidenced by synchrotron x-ray diffraction. A mapping of the reciprocal space reveals intensity modulations (satellites) due to regularly spaced polar domains in which the polarization appears rotated away from the substrate normal, characterizing a low-symmetry phase not observed in the bulk material.

View Article and Find Full Text PDF