Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the β-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available.
View Article and Find Full Text PDFThe transfection of Cryptosporidium represents a major challenge, and current protocols are based on electroporation of freshly excysted sporozoites using a rather large amount of plasmid DNA which typically has a very poor yield. In this study, we report a fast and simple protocol for transfection of Cryptosporidium parvum that takes advantage of the DNA condensing power of the poly cationic polymer polyethylenimine (PEI) and the gene delivery property of the short cell-penetrating peptide octaarginine. Our novel protocol requires a very low amount of plasmid DNA and does not necessitate special laboratory equipment to be performed.
View Article and Find Full Text PDFOligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with , compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, decreased doses.
View Article and Find Full Text PDFTeruaki Mukaiyama, formerly Professor at Tokyo Institute of Technology, Tokyo University, and Tokyo University of Science passed away on November 17, 2018. As one of the most productive organic chemists he has enriched the field of synthetic organic chemistry in 60 years of research. His most important contributions are reviewed herein by a close friend.
View Article and Find Full Text PDFA quantitative analysis by confocal fluorescence microscopy of the entry into HEK293 and MCF-7 cells by fluorescein-labeled octaarginine (1) and by three octa-Adp derivatives (2 - 4, octamers of the β-Asp-Arg-dipeptide, derived from the biopolymer cyanophycin) is described, including the effects of the membrane dye R18 and of DMSO on cell penetration.
View Article and Find Full Text PDFIn the formation of amyloid fibrils from small peptides, the appearance of superhelices of (P)- or (M)-helicity has been observed for the first time; high concentrations of the peptides and extended periods of incubation at physiological pH appear to be important for this phenomenon. In view of the general importance of peptide and protein aggregation, we give a brief overview with selected examples for demonstration.
View Article and Find Full Text PDFMany years ago, β(2) /β(3) -peptides, consisting of alternatively arranged β(2) - and β(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033).
View Article and Find Full Text PDFβ(3) -Octaarginine chains were attached to the functional groups NH and CO2 H of the antibacterial fluoroquinolones ciprofloxacin (→1) and enrofloxacin (→2), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell-penetrating peptide (CPP) moiety. For comparison, simple amides, 3-5, of the two antimicrobial compounds and β(3) -octaarginine amide (βR8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table).
View Article and Find Full Text PDFSubtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure-activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8-13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8-13), we replaced the tyrosine unit by β(2)-amino acids (type 1), by heterocyclic tyrosine bioisosteres (type 2) and peptoid analogues (type 3).
View Article and Find Full Text PDFThe effect of silyl substituents in diphenylprolinol silyl ether catalysts was investigated. Mechanistically, reactions catalyzed by diphenylprolinol silyl ether can be categorized into three types: two that involve an iminium ion intermediate, such as for the Michael-type reaction (type A) and the cycloaddition reaction (type B), and one that proceeds via an enamine intermediate (type C). In the Michael-type reaction via iminium ions (type A), excellent enantioselectivity is realized when the catalyst with a bulky silyl moiety is employed, in which efficient shielding of a diastereotopic face of the iminium ion is directed by the bulky silyl moiety.
View Article and Find Full Text PDFChimia (Aarau)
September 2014
An overview is given about our work on fluoro-organic compounds, published or described in PhD theses between 1977 and 2013. After a discussion of structural F-effects and F-tagging applications the material is ordered by the various areas of our research, in which we have used and/or prepared F-derivatives: Li- and Ti-organic compounds and reagents, polylithiated hydroxy-esters and nitroalkanes, the enantiopure trifluoro-lactic, -Roche, and -3-hydroxy-butanoic acids as toolbox for the preparation of numerous F₃C-substituted compounds, including natural products and dendrimers, and fluoro-α-, -β-, and -δ-amino acids, as well as peptides with back-bond-bound fluorine. The strong influence on β-peptide folding by fluoro-substituents in the α-position of β-amino-acid residues is discussed in terms of the α-fluoro-amide conformational effect.
View Article and Find Full Text PDFNeurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6).
View Article and Find Full Text PDFCellular drug delivery can improve efficacy and render intracellular pathogens susceptible to compounds that cannot permeate cells. The transport of physiologically active compounds across membranes into target cells can be facilitated by cell-penetrating peptides (CPPs), such as oligoarginines. Here, we investigated whether intracellular delivery of the drug fosmidomycin can be improved by combination with the CPP octaarginine.
View Article and Find Full Text PDFCell-penetrating peptides (CPPs) are promising vehicles for delivery of drugs, antibiotics, proteins, nucleic acid derivatives, etc. into eukaryotic and prokaryotic target cells. To prevent premature degradation, CPPs consisting of D- or β-amino acid residues have been used.
View Article and Find Full Text PDFAfter a survey of the special role, which the amino acid proline plays in the chemistry of life, the cell-penetrating properties of polycationic proline-containing peptides are discussed, and the widely unknown discovery by the Giralt group (J. Am. Chem.
View Article and Find Full Text PDFThe roles of polyhydroxy-butyrates/alkanoates (PHB/PHA) in biology, for the preparation of chiral building blocks, and as a source of inspiration for the discovery of β- and γ-peptides are discussed. The syntheses and structures of β-peptides are outlined. The prerequisites for mimicking peptide/protein interactions with β-peptides and two examples are presented.
View Article and Find Full Text PDFProtein kinases are widely recognized as important therapeutic targets due to their involvement in signal transduction pathways. These pathways are tightly controlled and regulated, notably by the ability of kinases to selectively phosphorylate a defined set of substrates. A wide variety of disorders can arise as a consequence of abnormal kinase-mediated phosphorylation and numerous kinase inhibitors have earned their place as key components of the modern pharmacopeia.
View Article and Find Full Text PDFThe β-aminopeptidase BapA from Sphingosinicella xenopeptidilytica belongs to the N-terminal nucleophile (Ntn) hydrolases of the DmpA-like family and has the unprecedented property of cleaving N-terminal β-amino acid residues from peptides. We determined the crystal structures of the native (αβ)₄ heterooctamer and of the 153 kDa precursor homotetramer at a resolution of 1.45 and 1.
View Article and Find Full Text PDFβ-Aminopeptidases have exclusive biocatalytic potential because they react with peptides composed of β-amino acids, which serve as building blocks for the design of non-natural peptidomimetics. We have identified the β-lactam antibiotic ampicillin and the ampicillin-derived penicilloic acid as novel inhibitors of the β-aminopeptidase BapA from Sphingosinicella xenopeptidilytica (K(i) values of 0.69 and 0.
View Article and Find Full Text PDFConnecting experimental observables with the underlying conformational ensemble is a long-standing problem in the structure determination of biomolecules. The simulations described in this article attempt to resolve a seeming discrepancy between the conformational features derived from measured NOE intensities, (3)J-coupling constants, and circular dichroism (CD) spectra for two β-peptides differing in a linker between two side-chains. Although both peptides are very similar in terms of the r(-6) averaged distances between atom pairs involved in the observed NOEs, the molecular dynamics trajectories suggest why the CD spectra show a greater 3(14)-helical propensity for the linked, cyclic peptide than for the linear one, whereas slightly more NMR NOE peaks are observed and assigned for the latter.
View Article and Find Full Text PDFProtein kinases are widely recognized as important therapeutic targets due to their involvement in signal transduction pathways. These pathways are tightly controlled and regulated, notably by the ability of kinases to selectively phosphorylate a defined set of substrates. As part of a study on the substrate requirements of Insulin-like Growth Factor 1 Receptor (IGF-1R) and Insulin Receptor (InsR), we evaluated and applied a universal assay system able to monitor the phosphorylation of unlabelled peptides of any length in real time.
View Article and Find Full Text PDFThe assembly-line architecture of polyketide synthases (PKSs) provides an opportunity to rationally reprogram polyketide biosynthetic pathways to produce novel antibiotics. A fundamental challenge toward this goal is to identify the factors that control the unidirectional channeling of reactive biosynthetic intermediates through these enzymatic assembly lines. Within the catalytic cycle of every PKS module, the acyl carrier protein (ACP) first collaborates with the ketosynthase (KS) domain of the paired subunit in its own homodimeric module so as to elongate the growing polyketide chain and then with the KS domain of the next module to translocate the newly elongated polyketide chain.
View Article and Find Full Text PDFThe terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig.
View Article and Find Full Text PDFFluorescein-labeled α- and β-octaarginine amides were synthesized. The route, by which these oligoarginine (OA) derivatives enter cells (hepatocytes, fibroblasts, macrophages), was investigated by confocal fluorescence microscopy. Comparisons (by co-localization experiments) with compounds of known penetration modes revealed that the β-octaarginine amide also uses multiple pathways to enter cells.
View Article and Find Full Text PDF