Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.
View Article and Find Full Text PDFBackground: Diabetic neuropathy (DN) is one of the most common microvascular complications of diabetes that is attributed to impaired immune regulation. In this study, we first examined the expression of long non-coding (lncRNAs) MALAT1 and H19, and their downstream microRNAs (miRNAs) miR-19b-3p, miR-125a-5p, and then assayed the mRNA expression of downstream targets of these miRNAs, including SEMA4C, SEMA4D, PLXNB2, ATG14, and ATG16L1.
Methods: Peripheral blood samples were obtained from 20 DN patients, 20 diabetic patients without neuropathy (non-DN), and 10 healthy controls (HC).
Background: Diabetic neuropathy (DN) is one of the microvascular complications of diabetes that leads to peripheral sensorimotor and autonomic nervous system damages. In this study, we first examined the expression of lncRNA NEAT-1 and its downstream microRNAs, miR-183-5p, miR-433-3p, and then examined mRNA expression of ITGA4, ITGB1, SESN1, and SESN3 as the downstream targets of miR-183-5p, miR-433-3p.
Methods: The blood sample was obtained from a total of 40 patients with type 2 diabetes (20 DN patients and 20 non-DN diabetic cases) and ten healthy individuals.
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by neuronal degeneration and inflammation in the nerves. The role of the immune system has been concentrated by researchers in the etiopathogenesis of the disease. Given the inhibitory roles of regulatory T cells (Tregs), it is expected that increasing or activating their populations in patients with ALS can have significant therapeutic effects.
View Article and Find Full Text PDF