Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot which displays a reticulate venation network.
View Article and Find Full Text PDFGrass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis.
View Article and Find Full Text PDFLeaves comprise a number of different cell-types that are patterned in the context of either the epidermal or inner cell layers. In grass leaves, two distinct anatomies develop in the inner leaf tissues depending on whether the leaf carries out C3 or C4 photosynthesis. In both cases a series of parallel veins develops that extends from the leaf base to the tip but in ancestral C3 species veins are separated by a greater number of intervening mesophyll cells than in derived C4 species.
View Article and Find Full Text PDFDiamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films.
View Article and Find Full Text PDFThe patterning of arrays of aligned multi-walled carbon nanotubes (MWCNTs) allows creating metastructures for terahertz (THz) applications. Here, the strips and columns from MWCNTs vertically grown on silicon substrates are prepared using CO laser treatment. The tops of the patterned arrays are flat when the laser power is between 15 and 22 W, and craters appear there with increasing power.
View Article and Find Full Text PDFCarbon nanohorns (CNHs) are attractive for various applications, where a high specific surface area and long dispersion stability in water are important. In the present work, we study these parameters of CNHs prepared by arc evaporation of graphite depending on the conditions of the synthesis and subsequent oxidation in air. It is shown that the addition of toluene in the reactor during the arcing allows obtaining CNHs functionalized with -CH groups.
View Article and Find Full Text PDFFilling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies.
View Article and Find Full Text PDFHere a simple and reproducible method for obtaining terahertz metasurfaces formed from multiwall carbon nanotubes (MWCNTs) is presented. The metasurfaces were obtained from a vertically aligned array of MWCNTs using a laser engraving technique followed by polymer covering. The structures under study demonstrate frequency-selective reflection in terahertz range following the Huygens-Fresnel formalism.
View Article and Find Full Text PDFDespite decades of study the precise behavior of bromine in graphitic carbons remains unclear. In this report, using Raman spectroscopy, we reveal two types of bromine structure in graphitic carbon materials. Between fluorinated graphene layers with a composition close to C2F, Br2 molecules are intercalated in a form similar to liquid bromine.
View Article and Find Full Text PDFThe highly efficient C photosynthetic pathway is facilitated by 'Kranz' leaf anatomy. In Kranz leaves, closely spaced veins are encircled by concentric layers of photosynthetic bundle sheath (inner) and mesophyll (outer) cells. Here, we demonstrate that, in the C monocot maize, Kranz patterning is regulated by redundant function of SCARECROW 1 (ZmSCR1) and a previously uncharacterized homeologue: ZmSCR1h.
View Article and Find Full Text PDFWe systematically studied the electromagnetic properties of carbon nanohorns (CNHs) and polystyrene composites filled with CNHs in static regime, low frequency and microwave regions. CNHs were synthesized using the direct current arc-discharge method using solid graphite rods and graphite rods filled by melamine mixed with graphite powder. Transmission electron microscopy and thermo-gravimetric analysis showed that CNH agglomerates are the main product, while the addition of melamine promotes the formation of graphite balls.
View Article and Find Full Text PDFOne of the most remarkable examples of convergent evolution is the transition from C to C photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz.
View Article and Find Full Text PDFUsing computational and theoretical approaches, we investigate the snap-through transition of buckled graphene membranes. Our main interest is related to the possibility of using the buckled membrane as a plate of capacitor with memory (memcapacitor). For this purpose, we performed molecular-dynamics (MD) simulations and elasticity theory calculations of the up-to-down and down-to-up snap-through transitions for membranes of several sizes.
View Article and Find Full Text PDFInterface interactions in multicomponent nanoparticles can affect electromagnetic properties of an absorbing system. In this work, we investigate the electromagnetic response of multi-walled carbon nanotubes (MWCNTs) filled with iron-containing nanoparticles (ICNs) in the terahertz frequency range. MWCNTs with different iron content have been synthesized by aerosol-assisted catalytic chemical vapour deposition method from toluene containing a certain quantity of ferrocene used as a catalyst.
View Article and Find Full Text PDFThe coordinated positioning of veins, mesophyll cells, and stomata across a leaf is crucial for efficient gas exchange and transpiration and, therefore, for overall function. In monocot leaves, stomatal cell files are positioned at the flanks of underlying longitudinal leaf veins, rather than directly above or below. This pattern suggests either that stomatal formation is inhibited in epidermal cells directly in contact with the vein or that specification is induced in cell files beyond the vein.
View Article and Find Full Text PDFAll grass leaves are strap-shaped with a series of parallel veins running from base to tip, but the distance between each pair of veins, and the cell-types that develop between them, differs depending on whether the plant performs C or C photosynthesis. As part of a multinational effort to introduce C traits into rice to boost crop yield, candidate regulators of C leaf anatomy were previously identified through an analysis of maize leaf transcriptomes. Here we tested the potential of 60 of those candidate genes to alter leaf anatomy in rice.
View Article and Find Full Text PDFAb initio calculations of dielectric function and electron energy loss (EEL) function of periodically rippled armchair-edged graphene were performed in the framework of the random-phase approximation. The bending of graphene was found to remove restrictions on the electron transitions being forbidden in the flat graphene for certain light polarization. As a result, new peaks appear in the optical absorption spectrum and EEL spectrum of rippled graphene.
View Article and Find Full Text PDFUpon DNA double-strand break (DSB) formation, hundreds of H2AX molecules in the chromatin flanking the break site are phosphorylated on serine residue 139, termed gamma-H2AX, so that virtually every DSB site in a nucleus can be visualised within 10 min of its formation using an antibody to gamma-H2AX. One application of this sensitive assay is to examine the induction of DNA double-strand damage in subtle non-targeted cellular effects such as the bystander effect. Here whether microRNA (miRNA) serve as a primary signalling mechanism for bystander effect propagation by comparing matched human colon carcinoma cell lines with wild-type or depleted levels of mature miRNAs was investigated.
View Article and Find Full Text PDFMeasurement of DNA double-strand break (DSB) levels in cells is useful in many research areas, including those related to DNA damage and repair, tumorigenesis, anti-cancer drug development, apoptosis, radiobiology, environmental effects, and aging, as well as in the clinic. DSBs can be detected in the nuclei of cultured cells and tissues with an antibody to H2AX phosphorylated on serine residue 139 (γ-H2AX). DSB levels can be obtained either by measuring overall γ-H2AX protein levels in a cell population or by counting γ-H2AX foci in individual nuclei.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
That tumors cause changes in surrounding tissues is well documented, but whether they also affect distant tissues is uncertain. Such knowledge may be important in understanding the relationship between cancer and overall patient health. To address this question, we examined tissues distant to sites of implanted tumors for genomic damage using cohorts of C57BL/6 and BALB/c mice with early-stage subcutaneous syngeneic grafts, specifically, B16 melanoma, MO5076 sarcoma, and COLON26 carcinoma.
View Article and Find Full Text PDFThe radiation-induced bystander effect (RIBE) is a phenomenon whereby unexposed cells exhibit molecular symptoms of stress exposure when adjacent or nearby cells are traversed by ionizing radiation (IR). Recent data suggest that RIBE may be epigenetically mediated by microRNAs (miRNAs), which are small regulatory molecules that target messenger RNA transcripts for translational inhibition. Here, we analyzed microRNAome changes in bystander tissues after α-particle microbeam irradiation of three-dimensional artificial human tissues using miRNA microarrays.
View Article and Find Full Text PDFDNA-dependent protein kinase (DNA-PK) is a key non-homologous-end-joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. To examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three models of DNA-PK deficiency, i.e.
View Article and Find Full Text PDFHuman tumors and cultured cells contain elevated levels of endogenous DNA damage resulting from telomere dysfunction, replication and transcription errors, reactive oxygen species, and genome instability. However, the contribution of telomere-associated versus telomere-independent endogenous DNA lesions to this damage has never been examined. In this study, we characterized the relative amounts of these two types of DNA damage in five tumor cell lines by noting whether gamma-H2AX foci, generally considered to mark DNA double-strand breaks (DSBs), were on chromosome arms or at chromosome ends.
View Article and Find Full Text PDFGenome stability is essential for maintaining cellular and organismal homeostasis, but it is subject to many threats. One ubiquitous threat is from a class of compounds known as reactive oxygen species (ROS), which can indiscriminately react with many cellular biomolecules including proteins, lipids, and DNA to produce a variety of oxidative lesions. These DNA oxidation products are a direct risk to genome stability, and of particular importance are oxidative clustered DNA lesions (OCDLs), defined as two or more oxidative lesions present within 10 bp of each other.
View Article and Find Full Text PDFIonizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs).
View Article and Find Full Text PDF