Publications by authors named "Seddon Thomas"

Article Synopsis
  • - Idiopathic pulmonary fibrosis (IPF) is a severe lung disease with no cure besides lung transplantation, and its mechanisms are not fully understood.
  • - Research indicates that a deficiency in the innate immune receptor TLR5 increases the risk of IPF in humans and raises vulnerability to lung damage and fibrosis in mice; activating TLR5 protects against these issues.
  • - The protective effects of TLR5 are linked to its role in promoting healthy microbial balance in the lungs, with disrupted microbiomes seen in both IPF patients and TLR5-deficient mice.
View Article and Find Full Text PDF

The intensity and longevity of inflammatory responses to inhaled allergens is determined largely by the balance between effector and regulatory immune responses, but the mechanisms that determine the relative magnitudes of these opposing forces remain poorly understood. We have found that the type of adjuvant used during allergic sensitization has a profound effect on both the nature and longevity of the pulmonary inflammation triggered by subsequent reexposure to that same provoking allergen. TLR ligand adjuvants and house dust extracts primed immune responses characterized by a mixed neutrophilic and eosinophilic inflammation that was suppressed by multiple daily allergen challenges.

View Article and Find Full Text PDF

Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking.

View Article and Find Full Text PDF

Alveolar macrophages (AM) play a central role in initiation and resolution of lung inflammation, but the integration of these opposing core functions is poorly understood. AM expression of cholesterol 25-hydroxylase (CH25H), the primary biosynthetic enzyme for 25-hydroxycholesterol (25HC), far exceeds the expression of macrophages in other tissues, but no role for CH25H has been defined in lung biology. As 25HC is an agonist for the antiinflammatory nuclear receptor, liver X receptor (LXR), we speculated that CH25H might regulate inflammatory homeostasis in the lung.

View Article and Find Full Text PDF

Airway neutrophilia occurs in approximately 50% of patients with asthma and is associated with particularly severe disease. Unfortunately, this form of asthma is usually refractory to corticosteroid treatment, and there is an unmet need for new therapies. Pulmonary neutrophilic inflammation is associated with Th17 cells, whose differentiation is controlled by the nuclear receptor, RORγt.

View Article and Find Full Text PDF

Pulmonary dendritic cells (DCs) are potent antigen-presenting cells that can activate both naïve and memory/effector T cells. However, very little is known of how movements and localization of DCs contribute to these events. To study this, we have developed new procedures that combine precision-cut lung slices with cell staining using fluorescently tagged antibodies to detect individual cell types.

View Article and Find Full Text PDF

Background: Mechanisms that elicit mucosal T17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear.

Objective: We sought to understand whether maintenance of lung T17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T17 cells.

Methods: Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation.

View Article and Find Full Text PDF

T helper 17 (T17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T17 cell differentiation remains elusive.

View Article and Find Full Text PDF

Background: Arsenic exposure via drinking water impacts millions of people worldwide. Although arsenic has been associated epidemiologically with increased lung infections, the identity of the lung cell types targeted by peroral arsenic and the associated immune mechanisms remain poorly defined.

Objectives: We aimed to determine the impact of peroral arsenic on pulmonary antibacterial host defense.

View Article and Find Full Text PDF

Endometriosis is a gynecological disease that negatively affects the health of 1 in 10 women. Although more information is known about late stage disease, the early initiation of endometriosis and lesion development is poorly understood. Herein, we use a uterine tissue transfer mouse model of endometriosis to examine early disease development and its dependence on estradiol (E2) and estrogen receptor (ER) α within 72 hours of disease initiation.

View Article and Find Full Text PDF

Asthma is associated with exposure to a wide variety of allergens and adjuvants. The extent to which overlap exists between the cellular and molecular mechanisms triggered by these various agents is poorly understood, but it might explain the differential responsiveness of patients to specific therapies. In particular, it is unclear why some, but not all, patients benefit from blockade of TNF.

View Article and Find Full Text PDF

Inhalation of allergens and pathogens elicits multiple changes in a variety of immune cell types in the lung. Flow cytometry is a powerful technique for quantitative analysis of cell surface proteins on immune cells, but it provides no information on the localization and migration patterns of these cells within the lung. Similarly, chemotaxis assays can be performed to study the potential of cells to respond to chemotactic factors in vitro, but these assays do not reproduce the complex environment of the intact lung.

View Article and Find Full Text PDF

The induction of allergen-specific T helper 2 (Th2) cells by lung dendritic cells (DCs) is a critical step in allergic asthma development. Airway delivery of purified allergens or microbial products can promote Th2 priming by lung DCs, but how environmentally relevant quantities and combinations of these factors affect lung DC function is unclear. Here, we investigated the ability of house dust extract (HDE), which contains a mixture of environmental adjuvants, to prime Th2 responses against an innocuous inhaled antigen.

View Article and Find Full Text PDF

Background: Humans with asthma display considerable heterogeneity with regard to T helper (Th) 2-associated eosinophilic and Th17-associated neutrophilic inflammation, but the impact of the environment on these different forms of asthma is poorly understood.

Objective: We studied the nature and longevity of asthma-like responses triggered by inhalation of allergen together with environmentally relevant doses of inhaled lipopolysaccharide (LPS).

Methods: Ovalbumin (OVA) was instilled into the airways of mice together with a wide range of LPS doses.

View Article and Find Full Text PDF

α-Galactosylceramide represents a new class of vaccine adjuvants and immunomodulators that stimulate NKT cells to secrete Th1 and Th2 cytokines. Synthetic variants with short or unsaturated acyl chains exhibit a striking Th2 bias in vivo but no evidence of defect in TCR signaling or stimulation of NKT cells in vitro. Using cd1d1(fl/fl) mice, we demonstrated that distinct APC types explained the cytokine bias in vivo.

View Article and Find Full Text PDF

Airborne exposure to microbial cell wall lipids such as lipopolysaccharide triggers innate immune responses that regulate susceptibility to allergic airway inflammation. α-Glycosylceramides represent another widespread class of microbial lipids that directly stimulate innate-like, IL-4- and IL-13-producing, CD1d-restricted NKT cells. In this study, we demonstrate that NKT cells constitutively accumulate and reside in the microvasculature of the mouse lung.

View Article and Find Full Text PDF

Innate-like NKT cells conspicuously accumulate within the liver microvasculature of healthy mice, crawling on the luminal side of endothelial cells, but their general recirculation pattern and the mechanism of their intravascular behavior have not been elucidated. Using parabiotic mice, we demonstrated that, despite their intravascular location, most liver NKT cells failed to recirculate. Antibody blocking experiments established that they were retained locally through constitutive LFA-1-intercellular adhesion molecule (ICAM) 1 interactions.

View Article and Find Full Text PDF

Asthma is a multifactorial disease of the airways characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. Conventional MHC class II-restricted CD4(+) T cells are considered a key cell in asthma pathogenesis because they have a broad T-cell receptor repertoire, providing specificity and reactivity to diverse protein allergens. This notion was challenged when a study found that invariant Natural Killer (NK) T cells were the predominant T cells in the lung and bronchoalveolar lavage fluid of all asthmatic subjects studied.

View Article and Find Full Text PDF

STAT6-mediated chemokine production in the lung is required for Th2 lymphocyte and eosinophil homing into the airways in allergic pulmonary inflammation, and thus is a potential therapeutic target in asthma. However, the critical cellular source of STAT6-mediated chemokine production has not been defined. In this study, we demonstrate that STAT6 in bone marrow-derived myeloid cells was sufficient for the production of CCL17, CCL22, CCL11, and CCL24 and for Th2 lymphocyte and eosinophil recruitment into the allergic airway.

View Article and Find Full Text PDF

Cerebral malaria is a significant cause of global mortality, causing an estimated two million deaths per year, mainly in children. The pathogenesis of this disease remains incompletely understood. Chemokines have been implicated in the development of cerebral malaria, and the IFN-inducible CXCR3 chemokine ligand IP-10 (CXCL10) was recently found to be the only serum biomarker that predicted cerebral malaria mortality in Ghanaian children.

View Article and Find Full Text PDF

T cells are critical mediators of the allergic airway inflammation seen in asthma. Pathogenic allergen-specific T cells are generated in regional lymph nodes and are then recruited into the airway by chemoattractants produced by the asthmatic lung. These recruited effector T cells and their products then mediate the cardinal features of asthma: airway eosinophilia, mucus hypersecretion, and airway hyperreactivity.

View Article and Find Full Text PDF

Human allergic asthma is a chronic inflammatory disease of the airways thought to be driven by allergen-specific Th2 cells, which are recruited into the lung in response to inhaled allergen. To identify chemoattractant receptors that control this homing pattern, we used endobronchial segmental allergen challenge in human atopic asthmatics to define the pattern of chemoattractant receptor expression on recruited T cells as well as the numbers of recruited CD1d-restricted NKT cells and levels of chemokines in the bronchoalveolar (BAL) fluid. CD1d-restricted NKT cells comprised only a small minority of BAL T cells before or after Ag challenge.

View Article and Find Full Text PDF

The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii.

View Article and Find Full Text PDF

Th1 and Th2 effector CD4+ T cells orchestrate distinct counterregulatory biological responses. To deliver effective tissue Th1- and Th2-type responses, Th1 and Th2 cell recruitment into tissue must be differentially regulated. We show that tissue-derived STAT1 controls the trafficking of adoptively transferred, Ag-specific, wild-type Th1 cells into the lung.

View Article and Find Full Text PDF