Familial Mediterranean Fever (FMF) is an autosomal recessive genetic disorder, primarily observed in populations around the Mediterranean Sea, linked to MEFV gene mutations. These mutations disrupt inflammatory responses, increasing pyrin-protein production. Traditional diagnosis relies on clinical symptoms, family history, acute phase reactants, and excluding similar syndromes with MEFV testing, which is expensive and often inconclusive due to heterozygous mutations.
View Article and Find Full Text PDFIntroduction: Biosensors, analytical devices integrating biological sensing elements with physicochemical transducers, have gained prominence as rapid and convenient tools for monitoring human health status using biochemical analytes. Due to its cost-effectiveness, simplicity, portability, and user-friendliness, electrochemical detection has emerged as a widely adopted method in biosensor applications. Crucially, biosensors enable early disease diagnosis by detecting protein biomarkers associated with various conditions.
View Article and Find Full Text PDFObjectives: Triazolopyrimidinones are compounds used in medicinal chemistry. In this study, three novel triazolopyrimidinone derivatives were synthesized as drug candidates: (5-(chloromethyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S1-TP), 2-(4-methoxyphenyl)-5-(piperidinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S2-TP), and 2-(4-methoxyphenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7(3H)-one) (S3-TP). Their electrochemical properties were investigated for the first time using voltammetric techniques on carbon graphite electrodes.
View Article and Find Full Text PDFBackground And Purpose: In this study, we present an electrochemical sensor for the detection of oxypeucedanin (Oxyp) and prantschimgin (Pra), two natural furanocoumarin derivatives. The determination of the effects of these molecules on DNA is important to be potential drug candidates. Our research focused on exploring the electrochemical behaviour of these compounds and their interaction with DNA.
View Article and Find Full Text PDFThe hydroxyapatite-lanthanum strontium cobalt ferrite (HA-LSCF) composite showed a good response on a screen-printed carbon electrode (SPCE) electrochemical aptasensor to detect SARS-CoV-2. SPCE/HA-LSCF with a thiolated aptamer has a strong affinity for the SARS-CoV-2 spike RBD protein. This occurs due to the binding of -SH to the HA-positive region.
View Article and Find Full Text PDFFunctional assay platforms could identify the biophysical properties of cells and their therapeutic response to drug treatments. Despite their strong ability to assess cellular pathways, functional assays require large tissue samples, long-term cell culture, and bulk measurements. Even though such a drawback is still valid, these limitations did not hinder the interest in these platforms for their capacity to reveal drug susceptibility.
View Article and Find Full Text PDFBecause of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS).
View Article and Find Full Text PDFNanoceria (cerium oxide nanoparticles: CeO-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO-NPs for electrochemical detection of various analytes reported in the most recent four years.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2022
In this article, we introduced an electrochemical biosensor employing graphite electrodes (GE) decorated with Nickel ferrite (NiFeO) nanoparticles for nucleic acid detection. NiFeO nanoparticles in a narrow size distribution were synthesized with co-precipitation technique. Their chemical and crystallographic properties were characterized with FTIR and X-ray spectroscopies.
View Article and Find Full Text PDFTurk J Pharm Sci
October 2021
Objectives: Linagliptin (Lin) is a drug used in treatment of type 2 diabetes mellitus. In this study, the electrochemical detection of Lin and its interaction with DNA was analyzed for the first time using voltammetric methods by measuring the oxidation currents of the adenine bases of DNA before and after the interaction. In addition, the electrochemical properties of the Lin were studied.
View Article and Find Full Text PDFSens Actuators B Chem
October 2021
After World Health Organization (WHO) announced COVID-19 outbreak a pandemic, we all again realized the importance of developing rapid diagnostic kits. In this article, we introduced a lightweight and field-portable biosensor employing a plasmonic chip based on nanohole arrays integrated to a lensfree-imaging framework for label-free detection of viruses in field-settings. The platform utilizes a CMOS (complementary metal-oxide-semiconductor) camera with high quantum efficiency in the spectral window of interest to monitor diffraction field patterns of nanohole arrays under the uniform illumination of an LED (light-emitting diode) source which is spectrally tuned to the plasmonic mode supported by the nanohole arrays.
View Article and Find Full Text PDFAccessing cell growth on adhesive substrates is critical for identifying biophysical properties of cells and their therapeutic response to drug therapies. However, optical techniques have low sensitivity, and their reliability varies with cell type, whereas microfluidic technologies rely on cell suspension. In this paper, we introduced a plasmonic functional assay platform that can precisely measure cell weight and the dynamic change in real-time for adherent cells.
View Article and Find Full Text PDFJ Electroanal Chem (Lausanne)
February 2021
Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety.
View Article and Find Full Text PDFSutures, staples, clips and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation.
View Article and Find Full Text PDFPhotonic crystals and plasmonic nanohole arrays are the conventional substrates for label-free biodetection applications. In this article, we readdressed these systems in terms of their sensing capability and provided a broad picture for a selection mechanism of optimum parameters providing strong sensing signals. We first investigated the physical origin of the transmission resonances supported by the two systems, which is the core of the label-free sensing mechanism, relying on strong light-matter interactions.
View Article and Find Full Text PDFOne major marker of nitrosative stress is the formation of 3-Nitrotyrosine (3-NT) from Tyrosine (Tyr) by adding a nitro group (-NO) with nitrating agents. Nitration of Tyr often causes loss of protein activity and is linked with many diseases. In this article, we detect 3-NT and discriminate it from Tyr with Differential Pulse Voltammetry (DPV) as it is a very important biomarker.
View Article and Find Full Text PDFAim And Objective: Surface Plasmon Resonance (SPR) based biosensor system was developed for the detection of Delta F508 (ΔF508del) Cystic Fibrosis (CF) mutation in both synthetic and real samples.
Material And Method: In order to provide an effective hybridization between probe and the Polymerase Chain Reaction (PCR) amplicons (target), streptavidin was bound to the surface and biotin-tag probe was sent to the streptavidin-coated surface. For the target preparation, blood samples were collected from the patients who suffer from CF.
We propose development of a novel electrochemical sensor based on fullerene-multi-walled carbon nanotubes composite film for the sensitive determination of the pyruvic acid in biological fluids. The developed sensor was characterized by cyclic voltammetry. The nanocomposite film of C60-MWCNTs on GCE exhibits electrocatalytic activity towards pyruvic acid reduction and also decreases the reduction overpotential.
View Article and Find Full Text PDFBiosens Bioelectron
February 2015
In this study, an electrochemical biosensor system for the detection of DNA hybridization by using gelatin methacrylate (GelMA) modified electrodes was developed. Electrochemical behavior of GelMA modified Pencil Graphite Electrode (PGE) that serve as a functional platform was investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and compared with those of the bare PGE. Hybridization was achieved in solution phase and guanine oxidation signal changes were evaluated.
View Article and Find Full Text PDFIn the past few years, a considerable amount of effort has been devoted toward the development of biomimetic scaffolds for cardiac tissue engineering. However, most of the previous scaffolds have been electrically insulating or lacked the structural and mechanical robustness to engineer cardiac tissue constructs with suitable electrophysiological functions. Here, we developed tough and flexible hybrid scaffolds with enhanced electrical properties composed of carbon nanotubes (CNTs) embedded aligned poly(glycerol sebacate):gelatin (PG) electrospun nanofibers.
View Article and Find Full Text PDFJanus Kinase 2 (JAK2) gene single point mutations, which have been reported to be associated with myeloproliferative disorders, are usually detected through conventional methods such as melting curve assays, allele-specific and quantitative Polymerase Chain Reactions (PCRs). Herein, an electrochemical biosensor for the detection of a Guanine (G) to Thymine (T) transversion at nucleotide position 1849 of the JAK2 gene was reported. Due to clinical importance of this mutation, easy and sensitive tests are needed to be developed.
View Article and Find Full Text PDFIncorporating graphene oxide inside GelMA hydrogels enhances their mechanical properties and reduces UV-induced cell damage while preserving their favorable characteristics for 3D cell encapsulation. NIH-3T3 fibroblasts encapsulated in GO-GelMA microgels demonstrate excellent cellular viability, proliferation, spreading, and alignment. GO reinforcement combined with a multi-stacking approach offers a facile engineering strategy for the construction of complex artificial tissues.
View Article and Find Full Text PDFBiosens Bioelectron
October 2013
microRNA (miRNA) has drawn a great attention in biomedical research due to its functions on biological processes. Detection of miRNAs is a big challenge since the amount present in real samples is very low and the length of them is short. In this study, for the first time an electrochemical biosensor for detection of mir21 using the oxidation signal of protein 19 (p19) as a molecular caliper was designed.
View Article and Find Full Text PDFBiosens Bioelectron
December 2012
In this work, a novel electrochemical microRNA (miRNA) detection method based on enzyme amplified biosensing of mir21 from cell lysate of total RNA was demonstrated. The proposed enzymatic detection method was detailed and compared with the conventional guanine oxidation based assay in terms of detection limit and specificity. For the detection of mir21, capture probes and/or cell lysates were covalently attached onto the pencil graphite electrode (PGE) by coupling agents of N-(dimethylamino)propyl-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (NHS).
View Article and Find Full Text PDF