Publications by authors named "Seda Cetİndere"

Two new BODIPY-fluorene-fullerene (3) and BODIPY-fluorene-BODIPY (4) conjugates were designed, synthesized, and characterized for the first time. The structural properties of compounds were investigated with elemental analysis, mass, H, and C NMR techniques. Absorption and fluorescence spectroscopy were used to examine the photophysical (absorption and emission profiles, fluorescence quantum yields, and lifetimes) and photochemical (formation of singlet oxygen (O)) properties.

View Article and Find Full Text PDF

Theranostic, which integrates the diagnosis and tumor treatment in tandem, is an emerging strategy in cancer treatment. Here, we report a novel and unique theranostic nanoparticle, HBCP NP, based on hexa-BODIPY cyclophosphazene (HBCP). Due to the unique bulky molecular structure of HBCP, this nanoparticle can simultaneously perform near-infrared (NIR) fluorescence imaging and photoacoustic imaging (PAI).

View Article and Find Full Text PDF

The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e.

View Article and Find Full Text PDF

In the present work, pyrene-boron-dipyrromethene (BODIPY)-substituted novel water-soluble cyclotriphosphazene derivatives (6 and 7) were synthesized by click reactions between a cyclotriphosphazene derivative with a hydrophilic glycol side group (2) and BODIPYs (4 and 5). All of the new compounds (2, 6, and 7) were characterized by Fourier-transform infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry and elemental analysis. The photophysical properties of the BODIPY-substituted cyclotriphosphazenes (6 and 7) were investigated by UV-Vis and fluorescence emission spectroscopy in water and water/solvent mixtures.

View Article and Find Full Text PDF

In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by 'click' reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy's (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc.

View Article and Find Full Text PDF

A new type of fluorescent chemosensor based on tethered hexa-borondipyrromethene cyclotriphosphazene platform (HBTC) linked via triazole groups was designed and synthesized. Its sensing behavior toward metal ions was investigated by ultraviolet-visible and fluorescence spectroscopies. Addition of a Fe(2+) ion to a tetrahydrofuran solution of HBTC gave a visual color change as well as a significantly quenched fluorescence emission, while other tested 19 metal ions induced no color or spectral changes.

View Article and Find Full Text PDF