Highly unsaturated fatty acids (HUFAs) are vulnerable to oxygen attack, thus making HUFA-rich, high metabolic rate/reactive oxygen species (ROS)-generating neurological tissue particularly susceptible to increased oxidative stress. Lipid oxidation is a putative early stage marker of neurodegenerative diseases, suggesting that reliable monitoring of oxidized neural lipids reveals early pathogenesis. Here, we present a novel methodology to detect and quantify intact ROS-driven peroxidized phospholipids (LPOx-PLs) in bovine retina extract.
View Article and Find Full Text PDFamplification () and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes , , , , and are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival.
View Article and Find Full Text PDFFatty acids (FAs) containing polymethylene-interrupted (PMI) double bonds are a component of human foods; however, they present a significant analytical challenge for identification. Covalent adduct chemical ionization and ozone-induced dissociation mass spectrometry (MS) methods enable unambiguous assignment of PMI-FA double bond positions, however, no method has been reported with electrospray ionization (ESI) platform using off-the-shelf systems. In the current work, we studied the Paternò-Büchi (PB) fragmentation patterns of PMI-FA and triacylglycerol (TG) by analyzing several known food sources.
View Article and Find Full Text PDFRu-based catalysis results in highly unsaturated fatty acid (HUFA) ethyl esters (EE) deuterated to various extents. The products carry H (D) mainly at their -allylic positions, where they are resistant to autoxidation compared to natural HUFA and are promising as neurological and retinal drugs. We characterized the extent of deuteration at each allylic position of docosa-4,7,10,13,16,19-hexaenoic acid deuterated to completion at -allylic and allylic positions (D-DHA) by two-dimensional (2D) and high-field (600 and 950 MHz) NMR.
View Article and Find Full Text PDF