Publications by authors named "Sechin Chang"

Naturally-colored brown cotton (NBC) fiber is an environmentally friendly raw source of fiber for textile applications. The fiber of some NBC cultivars exhibits flame-retardant properties, which can be used in textiles that require flame resistance. Proanthocyanidins or their derivatives are responsible for the brown pigment in NBC; however, how flame retardancy is related to pigmentation in NBC is poorly understood.

View Article and Find Full Text PDF

The need for prehospital hemostatic dressings that exert an antibacterial effect is of interest for prolonged field care. Here, we consider a series of antibacterial and zeolite formulary treatment approaches applied to a cotton-based dressing. The design of the fabric formulations was based on the hemostatic dressing TACGauze with zeolite Y incorporated as a procoagulant with calcium and pectin to facilitate fiber adherence utilizing silver nanoparticles, and cellulose-crosslinked ascorbic acid to confer antibacterial activity.

View Article and Find Full Text PDF

Cotton gin waste presents a significant challenge in the cotton ginning industry due to its abundant generation and limited disposal options. In this study, we explored the potential of cotton gin waste as a naturally occurring source material that can synthesize and host silver nanoparticles. The noncellulosic constituents of cotton gin waste served as effective reducing agents, facilitating the conversion of silver ions into silver atoms, while its porous structure acted as a microreactor, enabling controlled particle growth.

View Article and Find Full Text PDF

Herein, raw cotton is shown to undergo self-induced transformation into a nanostructured primary cell wall. This process generates a metal nanoparticle-mediated antimicrobial surface that is regenerable through multiple washings. Raw cotton, without being scoured and bleached, contains noncellulosic constituents including pectin, sugars, and hemicellulose in its primary cell wall.

View Article and Find Full Text PDF

The development of affordable, effective, and environmentally friendly barrier fabrics is a current goal in antimicrobial textile development. The discovery of new routes to achieve non-toxic naturally occurring molecules with antimicrobial activity is of interest in the development of materials that promote wound healing, improve hygiene, and offer protection against nosocomial infection. Highly cleaned and sterile unbleached cotton has constituents that produce hydrogen peroxide at levels commensurate with those that favor cell signaling in wound healing.

View Article and Find Full Text PDF

We assessed the enzymatic activation of four different biochars produced from pyrolyzing swine manure and poultry litter, and by co-pyrolyzing these livestock residues with agricultural spent mulch plastic film wastes (plastichars). Enzymatic activation consisted of incubating biochars in soil inoculated with earthworms (Lumbricus terrestris), which acted as biological vectors to facilitate retention of extracellular enzymes onto biochar surface. The activity of carboxylesterase ‒a pesticide-detoxifying enzyme‒ was measured in non-bioturbed soils (reference), linings of the burrows created by earthworms, casts (feces) and biochar particles recovered from the soil.

View Article and Find Full Text PDF

In this study, hydroentangled cotton nonwovens were identified as effective hosts for mineralization of calcium carbonate (CaCO) polymorphs to modify and improve their properties. All cotton varieties studied, including raw white cotton, scoured white cotton, and raw brown cotton, readily crystallized CaCO a simple cyclic dipping process. A combination of analyses agreed that the surface chemistry of cotton fibers influenced the formation of different CaCO polymorphs.

View Article and Find Full Text PDF

This special issue of the (JAFC) is a highlight of the Agricultural and Food Chemistry Division (AGFD) technical program at the 258th National Meeting of the American Chemical Society (ACS) in San Diego, CA, U.S.A.

View Article and Find Full Text PDF

A review is reported herein of the research progress made at the USDA's Southern Regional Research Center to provide an ultrasound and enzymatic alternative to the current textile processing method of scouring greige cotton textile with caustic chemicals. The review covers early efforts to measure pectin and wax removal from greige cotton textiles using standard wicking methodology and further describes an investigation of newly discovered polygalacturonase enzymes as bioscouring agents. Additional research is reviewed involving efforts to characterize and optimize the ultrasound-enhanced enzymatic scouring process through a statistical examination of the operating parameters of power, enzyme concentration, ultrasonic frequency and time.

View Article and Find Full Text PDF

Countless hours of research and studies on triazine, phosphonate, and their combination have provided insightful information into their flame retardant properties on polymeric systems. However, a limited number of studies shed light on the mechanism of flame retardancy of their combination on cotton fabrics. The purpose of this research is to gain an understanding of the thermal degradation process of two triazine-phosphonate derivatives on cotton fabric.

View Article and Find Full Text PDF

Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process.

View Article and Find Full Text PDF

Although nutrient-rich manure biochars are expected to be an effective heavy metal stabilizer in agricultural and contaminated soils, systematic studies are lacking to predict the influence of manure variety and pyrolysis temperature on metal-binding potentials. In this study, biochars produced from five manure varieties (dairy, paved feedlot, swine solids, poultry litter, and turkey litter) at two pyrolytic temperatures (350 and 700°C) were examined for the stabilization of Pb, Cu, Ni, and Cd in a weathered, acidic Norfolk loamy sand (fine-loamy, kaolinitic, thermic, Typic Kandiudult). Equilibrium concentrations in the aqueous phase were determined for heavy metals (Cu, Ni, Cd, and Pb) and additional selected elements (Na, P, S, Ca, Mg, Al, and K); these were analyzed by positive matrix factorization to quantitatively determine the factors responsible for the biochar's ability to bind the selected heavy metals in soil.

View Article and Find Full Text PDF

Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was first employed to fingerprint the principal components responsible for the stabilization of heavy metals (Cu, Ni, Cd, Pb) and the release of selected elements (Na, Ca, K, Mg, S, Al, P, Zn) and the pH change in biochar amended soils. The PMF analysis indicated that effective heavy metal stabilization occurred concurrently with the release of Na, Ca, S, K, and Mg originating from soil and biochar, resulting in as much as an order or magnitude greater equilibrium concentrations relative to the soil-only control.

View Article and Find Full Text PDF

Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %).

View Article and Find Full Text PDF

Chars, a form of environmental black carbon resulting from incomplete burning of biomass, can immobilize organic contaminants by both surface adsorption and partitioning mechanisms. The predominance of each sorption mechanism depends upon the proportion of organic to carbonized fractions comprising the sorbent. Information is currently lacking in the effectiveness of char amendment for heavy metal immobilization in contaminated (e.

View Article and Find Full Text PDF

It is shown that the previously characterized [Fe(III)(SR)(4)](1-) (R=Et, i-Pr, Ph) complexes can be synthesized by the direct reaction of 4equiv. of LiSR with FeCl(3) in DMF solution. [Fe(III)(SR)(4)](1-) complexes are synthetic analogs for the [Fe(III)(S-Cys)(4)] center in rubredoxin proteins.

View Article and Find Full Text PDF

The zinc(II) complex (PATH)ZnOH, where PATH is an N2S(thiolate) ligand, has been investigated for its ability to promote the hydrolysis of the phosphate triester tris(4-nitrophenyl) phosphate (TNP). The hydrolysis of TNP was examined as a function of PATH-zinc(II) complex concentration, substrate concentration, and pH in a water/ethanol mixture (66:33 v/v) at 25 degrees C. The reaction is first order in both zinc(II) complex and substrate, and the second-order rate constants were derived from linear plots of the observed pseudo-first-order rate constants versus zinc complex concentration at different pH values.

View Article and Find Full Text PDF

A novel zinc(II) hydroxide complex with a rare alkylthiolate donor in the coordination sphere is formed in aqueous solution from the dissolution of the zinc alkyl precursor complex (PATH)ZnCH(3) (PATH = 2-methyl-1-[methyl(2-pyridin-2-ylethyl)amino]propane-2-thiolate) in H(2)O and protonolysis of the Zn-C bond to give (PATH)ZnOH (1). The (PATH)ZnOH complex has been shown to promote the hydrolysis of 4-nitrophenyl acetate (4-NA) by a detailed kinetic study and is the first functional model for the zinc form of the enzyme peptide deformylase. From a fit of the sigmoidal pH-rate profile a kinetic pK(a) of 8.

View Article and Find Full Text PDF

The new N(2)S(alkylthiolate) ligand 2-methyl-1-[methyl-(2-pyridin-2-ylethyl)amino]propane-2-thiolate, PATH (1), has been prepared and reacted with zinc(II) and cobalt(II) to give the monomeric complexes [(PATH)ZnBr] (2), [(PATH)ZnNCS] (3), [(PATH)CoBr] (4), and [(PATH)CoNCS] (5). The molecular structures of 4 and 5 have been determined by X-ray diffraction. Each complex displays a distorted tetrahedral geometry at the metal center, with the PATH ligand providing the N(2)S(alkylthiolate) donors.

View Article and Find Full Text PDF