L-asparaginase is a widely used cancer chemotherapy enzyme. The source for the enzyme with this property is mainly bacterial and its synthesis is strongly regulated by oxygen. In this study, we utilized two recombinant systems: one carried the gene (vgb) for the Vitreoscilla hemoglobin (VHb), a protein of prokaryotic origin which confers a highly efficient oxygen uptake to its host and the other carried the L-asparaginase gene (ansB).
View Article and Find Full Text PDFMicrobial production of butanediol and acetoin has received increasing interest because of their diverse potential practical uses. Although both products are fermentative in nature, their optimal production requires a low level of oxygen. In this study, the use of a recombinant oxygen uptake system on production of these metabolites was investigated.
View Article and Find Full Text PDFHemoglobins in unicellular organisms, like the one here in the bacterium Vitreoscilla, have greater chemical reactivity than their homologues in multicellular organisms. They can catalyze redox reactions and may protect cells against oxidative stress. The ability of Vitreoscilla hemoglobin to complement deficiencies of terminal cytochrome oxidases in Escherichia coli also suggests that this hemoglobin can receive electrons during respiration.
View Article and Find Full Text PDF