Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFNeurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFMapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues.
View Article and Find Full Text PDFWe present a follow-on technique for the cyclic-immunofluorescence profiling of suspension particles isolated using dielectrophoresis. The original lab-on-chip technique ("cyc-DEP" [cyclic immunofluorescent imaging on dielectrophoretic chip]) was designed for the multiplex surveillance of circulating biomarkers. Nanoparticles were collected from low-volume liquid biopsies using microfluidic dielectrophoretic chip technology.
View Article and Find Full Text PDFCancer is a highly heterogenous disease that requires precise detection tools and active surveillance methods. Liquid biopsy assays provide an agnostic way to follow the complex trajectory of cancer, providing better patient stratification tools for optimized treatment. Here, we present the development of a low-volume liquid biopsy assay called cyc-DEP (cyclic immunofluorescent imaging on dielectrophoretic chip) to profile biomarkers collected on a dielectrophoretic microfluidic chip platform.
View Article and Find Full Text PDFIdentifying precise molecular subtypes attributable to specific stages of localized prostate cancer has proven difficult due to high levels of heterogeneity. Bulk assays represent a population-average, which mask the heterogeneity that exists at the single-cell level. In this work, we sequence the accessible chromatin regions of 14,424 single-cells from 18 flash-frozen prostate tumours.
View Article and Find Full Text PDFReplication stress underlies many genomic alterations in cancer cells. In this issue of Developmental Cell, Benedict et al. show that WAPL-dependent cohesin removal is needed to restart DNA synthesis at stalled forks and promote survival following replication stress, uncovering an unexpected link between stress and sister chromatid cohesion loss.
View Article and Find Full Text PDFHox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs.
View Article and Find Full Text PDF