Publications by authors named "Sebillon P"

Background: The aim of the study was to assess underlying genetic cause(s), clinical features, and response to therapy in catecholaminergic polymorphic ventricular tachycardia (CPVT) probands.

Methods And Results: We identified 13 missense mutations in the cardiac ryanodine receptor (RYR2) in 12 probands with CPVT. Twelve were new, of which two are de novo mutations.

View Article and Find Full Text PDF

Background: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease caused by mutations in sarcomeric genes. However, extensive genetic screening failed to identify a mutation in about a third of cases. One possible explanation is that other diseases, caused by other genes, may mimic HCM.

View Article and Find Full Text PDF

Although previous findings have suggested that some adult stem cells are pluripotent and could differentiate in an appropriate microenvironment, the fate conversion of adult stem cells is currently being debated. Here, we studied the ability of mobilized stem cells to repair cardiac tissue injury in a nonhuman primate model of acute myocardial infarction. Mobilization was carried out with stem cell factor, 25 mcg/Kg/d (D), and granulocyte-colony-stimulating factor, 100 mcg/Kg/D administered 5 days before (D - 5 group; n = 3) or 4 hours after (H + 4 group; n = 4) circumflex coronary artery ligation; no growth factor was administered to 3 baboons of the control group.

View Article and Find Full Text PDF

Aims: Mutations in the lamin A/C gene (LMNA) have been reported to be involved in dilated cardiomyopathy (DCM) associated with conduction system disease and/or skeletal myopathy. The aim of this study was to perform a mutational analysis of LMNA in a large white population of patients affected by dilated cardiomyopathy with or without associated symptoms.

Methods: We performed screening of the coding sequence of LMNA on DNA samples from 66 index cases, and carried out cell transfection experiments to examine the functional consequences of the mutations identified.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is defined by ventricular dilatation associated with impaired contractile function. Approximately one-third of idiopathic dilated cardiomyopathy cases are due to inherited gene mutations. Mutations in the beta- and delta-sarcoglycan genes have been described in limb girdle muscular dystrophy and/or isolated DCM.

View Article and Find Full Text PDF

Heritable dilated cardiomyopathy is a genetically highly heterogeneous disease. To date 17 different chromosomal loci have been described for autosomal dominant forms of dilated cardiomyopathy with or without additional clinical manifestations. Among the 10 mutated genes associated with dilated cardiomyopathy, the lamin A/C (LMNA) gene has been reported in forms associated with conduction-system disease with or without skeletal muscle myopathy.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare arrhythmogenic disorder characterized by syncopal events and sudden cardiac death at a young age during physical stress or emotion, in the absence of structural heart disease. We report the first nonsense mutations in the cardiac calsequestrin gene, CASQ2, in three CPVT families. The three mutations, a nonsense R33X, a splicing 532+1 G>A, and a 1-bp deletion, 62delA, are thought to induce premature stop codons.

View Article and Find Full Text PDF

Myosin-binding protein C (MyBP-C) is thought to play structural and/or regulatory role in striated muscles. The cardiac isoform of MyBP-C is one of the disease genes associated with familial hypertrophic cardiomyopathy and most of the mutations produce COOH truncated proteins. In order to determine the consequences of these mutations on myosin filament organization, we have characterized the effect of a 52-kDa NH2-terminal peptide of human cardiac MyBP-C on the alpha-myosin heavy chain (alpha-MyHC) filament organization.

View Article and Find Full Text PDF

Mutations in human cardiac myosin-binding protein C (cMyBP-C) gene are associated with familial hypertrophic cardiomyopathy (FHC), and most of them are predicted to produce COOH-truncated proteins. To understand the molecular mechanism(s) by which such mutations cause FHC, we analyzed (i) the accumulation of human cMyBP-C mutants in fetal rat cardiomyocytes, and (ii) the protein sequence of the human wild-type (wt) cMyBP-C by hydrophobic cluster analysis with the aim of identifying new putative myosin-binding site(s). Accumulation and sarcomeric localization of the wt protein and of four FHC-mutant cMyBP-Cs (E542Q and three COOH-truncated proteins) were studied in cardiomyocytes by immunostaining and confocal microscopy after transfection with myc-tagged constructs.

View Article and Find Full Text PDF

In a patient with a beta-thalassemia intermedia, a mutation was identified in the second intron of the human beta-globin gene. The U-->G mutation is located within the polypyrimidine tract at position -8 upstream of the 3' splice site. In vivo, this mutation leads to decreased levels of the hemoglobin protein.

View Article and Find Full Text PDF

A rapid nonradioactive method for the diagnosis of the most frequent Mediterranean beta-thalassemic mutations is described based on a multiplex allele-specific polymerase chain reaction (PCR). This method allows direct detection of normal or mutated alleles on genomic DNA. We have used this approach to detect the most frequent Mediterranean mutations: IVS-1 nt 110 (G----A) and 39 nonsense (C----T).

View Article and Find Full Text PDF