Publications by authors named "Sebek M"

The offering of grocery stores is a strong driver of consumer decisions. While highly processed foods such as packaged products, processed meat and sweetened soft drinks have been increasingly associated with unhealthy diets, information on the degree of processing characterizing an item in a store is not straightforward to obtain, limiting the ability of individuals to make informed choices. GroceryDB, a database with over 50,000 food items sold by Walmart, Target and Whole Foods, shows the degree of processing of food items and potential alternatives in the surrounding food environment.

View Article and Find Full Text PDF

Network medicine leverages the quantification of information flow within sub-cellular networks to elucidate disease etiology and comorbidity, as well as to predict drug efficacy and identify potential therapeutic targets. However, current Network Medicine toolsets often lack computationally efficient data processing pipelines that support diverse scoring functions, network distance metrics, and null models. These limitations hamper their application in large-scale molecular screening, hypothesis testing, and ensemble modeling.

View Article and Find Full Text PDF

The development of highly efficient and stable visible-light-driven photocatalysts for the removal of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water is still a challenge. In this work, BiMoO (BMO) materials with different morphology were successfully prepared via a simple hydrothermal method by altering the solvent. The morphology of the BMO material is mainly influenced by the solvent used in the synthesis (HO, ethanol, and ethylene glycol or their mixtures) and to a lesser extent by subsequent thermal annealing.

View Article and Find Full Text PDF

The binding interactions between small molecules and proteins are the basis of cellular functions. Yet, experimental data available regarding compound-protein interaction is not harmonized into a single entity but rather scattered across multiple institutions, each maintaining databases with different formats. Extracting information from these multiple sources remains challenging due to data heterogeneity.

View Article and Find Full Text PDF

We demonstrate a high dynamic range (DR) Fourier-transform-based terahertz (THz) spectrometer by combining a THz photomultiplier tube (PMT) with a metasurface and a conventional Michelson interferometer. Because the THz-PMT response depends on the incident electric-field strength following the Fowler-Nordheim equation, we can directly obtain an electric field interferogram without any synchronized optical probe pulse in contrast to conventional THz-time-domain-spectroscopy (THz-TDS). The DR of the corresponding power spectrum using the proposed method was 4.

View Article and Find Full Text PDF

The spatiotemporal organization of networks of dynamical units can break down resulting in diseases (e.g., in the brain) or large-scale malfunctions (e.

View Article and Find Full Text PDF

Dengue disease is a viral infection that has been widespread in tropical regions, such as Southeast Asia, South Asia and South America. A worldwide effort has been made over a few decades to halt the spread of the disease and reduce fatalities. Lateral flow assay (LFA), a paper-based technology, is used for dengue virus detection and identification because of its simplicity, low cost and fast response.

View Article and Find Full Text PDF

We present a general optimization technique for surface plasmon resonance, (SPR) yielding a range of ultrasensitive SPR sensors from a materials database with an enhancement of ∼100%. Applying the algorithm, we propose and demonstrate a novel dual-mode SPR structure coupling SPP and a waveguide mode within GeO featuring an anticrossing behavior and an unprecedented sensitivity of 1364 deg/RIU. An SPR sensor operating at wavelengths of 633 nm having a bimetal Al/Ag structure sandwiched between hBN can achieve a sensitivity of 578 deg/RIU.

View Article and Find Full Text PDF

Knowledge of the chemical stability of active pharmaceutical ingredients (APIs) is an important issue in the drug development process. This work describes a methodical approach and a comprehensive protocol for forced photodegradation studies of solid clopidogrel hydrogen sulfate (Clp) under artificial sunlight and indoor irradiation at different relative humidities (RHs) and atmospheres. The results showed that, at low RHs (up to 21%), this API was relatively resistant to simulated sunlight as well as indoor light.

View Article and Find Full Text PDF

Excitonic resonance in atomically thin semiconductors offers a favorite platform to study 2D nanophotonics in both classical and quantum regimes and promises potentials for highly tunable and ultra-compact optical devices. The understanding of charge density dependent exciton-trion conversion is the key for revealing the underlaying physics of optical tunability. Nevertheless, the insufficient and inefficient light-matter interactions hinder the observation of trionic phenomenon and the development of excitonic devices for dynamic power-efficient electro-optical applications.

View Article and Find Full Text PDF

Identifying novel drug-target interactions is a critical and rate-limiting step in drug discovery. While deep learning models have been proposed to accelerate the identification process, here we show that state-of-the-art models fail to generalize to novel (i.e.

View Article and Find Full Text PDF

In the broad spectral range, near-infrared (NIR) plasmonics find applications in telecommunication, energy harvesting, sensing, and more, all of which would benefit from an electrostatically controllable NIR plasmon source. However, it is difficult to control bulk NIR plasmonics directly with electrostatics because of the strong electric-field screening effect and high carrier concentration required to support NIR plasmons. Here, this constraint is overcome and the observation of NIR plasmonic resonances that can be modulated electrostatically over a range of ≈360 cm in few-layer NbSe gratings is reported, thanks to the enhanced electrostatics of atomically thin 2D materials and the high-quality film produced by a solution method.

View Article and Find Full Text PDF

Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS.

View Article and Find Full Text PDF

Synchronization is a widespread phenomenon observed in physical, biological, and social networks, which persists even under the influence of strong noise. Previous research on oscillators subject to common noise has shown that noise can actually facilitate synchronization, as correlations in the dynamics can be inherited from the noise itself. However, in many spatially distributed networks, such as the mammalian circadian system, the noise that different oscillators experience can be effectively uncorrelated.

View Article and Find Full Text PDF

Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC).

View Article and Find Full Text PDF

In this paper is demonstrated the clinical usefulness of Freud's last and revolutionary drive theory of life drives and the death drive. The concept of the death drive is shortly discussed as a psychic force leading to deconstruction, fragmentation, dissolution, disinvestment of the self and object, a decrease of liveliness, and finally to the psychic agony paralyzing the self and object. Freud's unbinding and Green's disobjectalization are psychic processes leading to the above results.

View Article and Find Full Text PDF

The synchronization of two groups of electrochemical oscillators is investigated during the electrodissolution of nickel in sulfuric acid. The oscillations are coupled through combined capacitance and resistance, so that in a single pair of oscillators (nearly) in-phase synchronization is obtained. The internal coupling within each group is relatively strong, but there is a phase difference between the fast and slow oscillators.

View Article and Find Full Text PDF

Rotating wave synchronization patterns are explored with a ring of 20 electrochemical oscillators during nickel electrodissolution in sulfuric acid. With desynchronized initial states, coupling alone yields predominance of nonrotating solutions, i.e.

View Article and Find Full Text PDF

Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks.

View Article and Find Full Text PDF

Interactions among discrete oscillatory units (e.g., cells) can result in partially synchronized states when some of the units exhibit phase locking and others phase slipping.

View Article and Find Full Text PDF

We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize.

View Article and Find Full Text PDF

We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators.

View Article and Find Full Text PDF

Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations.

View Article and Find Full Text PDF

We present theoretical and experimental studies on pattern formation with bistable dynamical units coupled in a star network configuration. By applying a localized perturbation to the central or the peripheral elements, we demonstrate the subsequent spreading, pinning, or retraction of the activations; such analysis enables the characterization of the formation of stationary patterns of localized activity. The results are interpreted with a theoretical analysis of a simplified bistable reaction-diffusion model.

View Article and Find Full Text PDF