With the availability of low-cost and efficient digital cameras, ecologists can now survey the world's biodiversity through image sensors, especially in the previously rather inaccessible marine realm. However, the data rapidly accumulates, and ecologists face a data processing bottleneck. While computer vision has long been used as a tool to speed up image processing, it is only since the breakthrough of deep learning (DL) algorithms that the revolution in the automatic assessment of biodiversity by video recording can be considered.
View Article and Find Full Text PDFDeep learning has become a key tool for the automated monitoring of animal populations with video surveys. However, obtaining large numbers of images to train such models is a major challenge for rare and elusive species because field video surveys provide few sightings. We designed a method that takes advantage of videos accumulated on social media for training deep-learning models to detect rare megafauna species in the field.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFProcessing data from surveys using photos or videos remains a major bottleneck in ecology. Deep Learning Algorithms (DLAs) have been increasingly used to automatically identify organisms on images. However, despite recent advances, it remains difficult to control the error rate of such methods.
View Article and Find Full Text PDF