Lava domes exhibit highly unpredictable and hazardous behavior, which is why imaging their morphological evolution to decipher the underlying governing mechanisms remains a major challenge. Using high-resolution satellite radar imagery enhanced with deep-learning, we image the repetitive dome construction-subsidence cycles at Popocatépetl volcano (Mexico) with very high temporal and spatial resolution. We show that these cycles resemble gas-driven rise and fall of the upper magma column, where buoyant bubble-rich magma is extruded from the conduit (in ~hours-days), and successively drained back (in ~days-months) as magma degasses and crystallizes.
View Article and Find Full Text PDFFlank instability and sector collapses, which pose major threats, are common on volcanic islands. On 22 Dec 2018, a sector collapse event occurred at Anak Krakatau volcano in the Sunda Strait, triggering a deadly tsunami. Here we use multiparametric ground-based and space-borne data to show that prior to its collapse, the volcano exhibited an elevated state of activity, including precursory thermal anomalies, an increase in the island's surface area, and a gradual seaward motion of its southwestern flank on a dipping décollement.
View Article and Find Full Text PDFEffusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics.
View Article and Find Full Text PDF