The synthesis of boron difluoride complexes of a series of curcuminoid derivatives containing various donor end groups is described. Time-dependent (TD)-DFT calculations confirm the charge-transfer character of the second lowest-energy transition band and ascribe the lowest energy band to a "cyanine-like" transition. Photophysical studies reveal that tuning the donor strength of the end groups allows covering a broad spectral range, from the visible to the NIR region, of the UV-visible absorption and fluorescence spectra.
View Article and Find Full Text PDFHemicurcuminoids are based on half of the π-conjugated backbone of curcuminoids. The synthesis of a series of such systems and their borondifluoride complexes is described. The electrochemical and photophysical properties of difluorodioxaborine species were investigated as a function of the nature of electron donor and acceptor groups appended at either terminal positions of the molecular backbone.
View Article and Find Full Text PDFCalcium ion acts in nearly every aspect of cellular life. The versatility and specificity required for such a ubiquitous role is ensured by the spatio-temporal dynamics of calcium concentration variations. While calcium signal dynamics has been extensively studied in cell cultures and adult tissues, little is known about calcium activity during early tissue morphogenesis.
View Article and Find Full Text PDFMechanotransduction modulates cellular functions as diverse as migration, proliferation, differentiation, and apoptosis. It is crucial for organ development and homeostasis and leads to pathologies when defective. However, despite considerable efforts made in the past, the molecular basis of mechanotransduction remains poorly understood.
View Article and Find Full Text PDFFor the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system.
View Article and Find Full Text PDFDrosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis.
View Article and Find Full Text PDFThe Hand proteins of the bHLH family of transcriptional factors play critical roles in vertebrate cardiogenesis. In Drosophila, the single orthologous Hand gene is expressed in the developing embryonic dorsal vessel (heart), lymph glands, circular visceral musculature, and a subset of CNS cells. We demonstrate that the absence of Hand activity causes semilethality during the early larval instars.
View Article and Find Full Text PDFUnravelling the mechanisms controlling cardiac automatism is critical to our comprehension of heart development and cardiac physiopathology. Despite the extensive characterization of the ionic currents at work in cardiac pacemakers, the precise mechanisms initiating spontaneous rhythmic activity and, particularly, those responsible for the specific control of the pacemaker frequency are still matters of debate and have not been entirely elucidated. By using Drosophila as a model animal to analyze automatic cardiac activity, we have investigated the function of a K+ channel, ORK1 (outwardly rectifying K+ channel-1) in cardiac automatic activity.
View Article and Find Full Text PDF