A convergent synthesis of one isomer of the C14-C29 fragment of mirabalin is disclosed. The key steps include a Marshall allenylation, a Mukaiyama aldol reaction and a Crimmins aldolization, which allow the control of 10 out of 25 stereogenic centers present in the molecule.
View Article and Find Full Text PDFA myriad of natural and/or biologically active products include nitrogen- and oxygen-containing saturated heterocycles, which are thus considered as attractive scaffolds in the drug discovery process. As a consequence, a wide range of reactions has been developed for the construction of these frameworks, much effort being specially devoted to the formation of substituted tetrahydropyrans and piperidines. Among the existing methods to form these heterocycles, the metal-catalyzed heterocyclization of amino- or hydroxy-allylic alcohol derivatives has emerged as a powerful and stereoselective strategy that is particularly interesting in terms of both atom-economy and ecocompatibility.
View Article and Find Full Text PDFIron- and cobalt-catalyzed cross-couplings between iodo-azetidines, -pyrrolidines, -piperidines, and Grignard reagents are disclosed. The reaction is efficient, cheap, chemoselective and tolerates a large variety of (hetero)aryl Grignard reagents.
View Article and Find Full Text PDFCross-metathesis involving N-heteroaromatic olefinic derivatives is disclosed. The introduction of an appropriate substituent on the heteroaromatic ring decreases the Lewis basicity of the nitrogen atom, thus preventing the deactivation of the ruthenium-centered catalyst. The reaction is quite general in terms of both N-heterocycles and olefinic partners.
View Article and Find Full Text PDFA convergent and flexible stereoselective synthesis of one isomer of the C44-C65 fragment of mirabalin is described. The key steps include organocatalytic aldolization, ruthenium-catalyzed asymmetric hydrogenation, amide formation, Marshall stereoselective allenylation, and the Nozaki-Hiyama-Kishi reaction.
View Article and Find Full Text PDFThis review highlights the isolation and the structural determination of amphidinol 3 (AM3), as well as the synthetic efforts to its preparation. The mechanism of action of AM3 will not be developed herein.
View Article and Find Full Text PDFAn efficient stereoselective synthesis of the C14–C29 fragment highlighting a coupling reaction between a 1,3-dithiane derivative and an α-branched aldehyde was realized. This highly convergent synthesis involved two chiral pools, L-malic acid and (+)-camphorsulfonic acid, which are the starting compounds to control the six stereogenic centers present in the C14–C29 fragment of amphidinol 3.
View Article and Find Full Text PDFAn array of C-aryl and C-vinyl furanosides were prepared in good yields and diastereoselectivities from C-halogeno furanosides either with aryl Grignard or with vinyl Grignard using the convenient Co(acac)3/TMEDA catalytic system. This method is illustrated by the total synthesis of the (-)-isoaltholactone.
View Article and Find Full Text PDFAn ecofriendly and diastereoselective synthesis of cis-3,5-disubstituted isoxazolidines through the FeCl3·6H2O-catalyzed cyclization of δ-hydroxylamino allylic acetates is described. The synthetic potential of these products is highlighted by the preparation of several functionalized 1,3-amino alcohol precursors.
View Article and Find Full Text PDFThe diastereoselective synthesis of the C17-C30 fragment of amphidinol 3 (AM3) 1 was achieved from the enantio-enriched aldehyde 20, Weinreb amide 14 and 2-bromo-3-(trimethylsilyl)propene, which was used as a bifunctional conjunctive reagent. The absolute configuration of the stereogenic centers, in both aldehyde 20 and Weinreb amide 14, were efficiently controlled by using (+)-(R)-methyl-p-tolylsulfoxide as the unique source of chirality.
View Article and Find Full Text PDFCobalt, the catalyst of choice: The diastereoselective cobalt-catalyzed cross-coupling of 1-bromo glycosides and aryl or vinyl Grignard reagents is described. A convenient and inexpensive catalyst, [Co(acac)(3)]/tmeda (acac = acetylacetonate, tmeda = N,N'-tetramethylethylenediamine), gives full α selectivity in the mannose and galactose series, and an α selectivity in the glucose series with α/β ratios of 1.3:1-3:1.
View Article and Find Full Text PDFA formal convergent synthesis of dictyostatin from (R)-Roche ester is described. Synthetic highlights include a Ni-catalyzed Nozaki-Hiyama-Kishi coupling between an aldehyde and a Z vinyl iodide to assemble the two main fragments, a diastereoselective Myers alkylation, a stereoselective Evans aldolization, two asymmetric Duthaler crotyltitanations, and a stereoselective Pd-catalyzed Marshall allenylindium addition to install the stereogenic centers of dictyostatin. The synthesis of (9R)-epi-dictyostatin and a new ring-contracted dictyostatin isomer were also achieved.
View Article and Find Full Text PDFSynthetic studies toward the spiroketal core of spirangien A are described. Two synthetic approaches were developed. Both of them use a diastereoselective aldol addition of a lithium enolate derived from a methyl ketone on an aldehyde.
View Article and Find Full Text PDFSilica gel was found to efficiently promote the rearrangement of allylic acetates into their most stable regioisomers under microwave irradiation. The reaction is easy to perform and eco-friendly. This method was applied to the metal-free synthesis of 1,3-enynes.
View Article and Find Full Text PDFThe eco-friendly and highly diastereoselective synthesis of substituted cis-2,6-piperidines and cis-2,6-tetrahydropyrans is described. The key step of this method is the iron-catalyzed thermodynamic equilibration of 2-alkenyl 6-substituted piperidines and 2-alkenyl 6-substituted tetrahydropyrans allowing the isolation of enriched mixtures of the most stable cis-isomers.
View Article and Find Full Text PDFA chemoselective synthesis of 1, the macrocyclic core of leucascandrolide A, has been achieved by utilizing highly enantioselective allylmetalations, an enantioselective Noyori reduction of a propargylic ketone, and olefin metatheses as the key steps.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2007
A chemoselective synthesis of the macrocyclic core of leucascandrolide A has been achieved, utilizing highly enantioselective allylmetalations, an enantioselective Noyori reduction of a propargylic ketone and olefin metatheses as the key steps.
View Article and Find Full Text PDF[structure: see text] A convergent and rapid stereoselective synthesis of (-)-spongidepsin has been achieved from the Roche ester in 14 steps with an overall yield of 13%.
View Article and Find Full Text PDF