Publications by authors named "Sebastien Rauch"

Stabilization and solidification (S/S) is known to improve the structural properties of sediment and reduce contaminant mobility, enabling the utilization of dredged contaminated sediment. Further reduction of contaminants (e.g.

View Article and Find Full Text PDF

Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S.

View Article and Find Full Text PDF

Metal and tributyltin (TBT) contaminated sediments are problematic for sediment managers and the environment. This study is the first to compare Fenton's reagent and electrochemical treatment as remediation methods for the removal of TBT and metals using laboratory-scale experiments on contaminated dredged sediment. The costs and the applicability of the developed methods were also compared and discussed.

View Article and Find Full Text PDF

Large quantities of sediment must be dredged regularly to enable marine transport and trade. The sediments are often polluted, with e.g.

View Article and Find Full Text PDF

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure.

View Article and Find Full Text PDF

All over the world, elevated levels of metals and the toxic compound tributyltin (TBT) and its degradation products are found in sediments, especially close to areas associated with shipping and anthropogenic activities. Ports require regular removal of sediments. As a result, large volumes of often contaminated sediments must be managed.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae MBOAT O-acyltransferase Gup1 is involved in many processes, including cell wall and membrane composition and integrity, and acetic acid-induced cell death. Gup1 was previously shown to interact physically with the mitochondrial membrane VDAC (Voltage-Dependent Anion Channel) protein Por1 and the ammonium transceptor Mep2. By co-immunoprecipitation, the eisosome core component Pil1 was identified as a novel physical interaction partner of Gup1.

View Article and Find Full Text PDF

The use of stormwater ponds along the highways is shown to be an effective alternative to conventional systems, which are usually sewers. These ponds have the potential to combine their primary function of pollution and peak flow control with the promotion of biodiversity. The present study focuses on comparing natural and highway stormwater ponds in terms of environmental conditions and biodiversity of macroinvertebrate communities.

View Article and Find Full Text PDF

Sediments in ports, marinas and waterways around the world are often contaminated with metals arising from anthropogenic activities. Regular dredging is needed to achieve an appropriate water depth and reduce the environmental impact of pollutants. The aim of this study was to develop an integrated assessment method for comparing various management strategies for dredged sediments at six case study sites in Sweden.

View Article and Find Full Text PDF

Abstract: Stormwater ponds are used to compensate for the adverse effects that road runoff might have on the natural environment. Depending on their design and placement, stormwater ponds can act as both refugia and traps for local biodiversity. To evaluate the impact of stormwater ponds on biodiversity, it is critical to use effective and precise methods for identification of life associated with the water body.

View Article and Find Full Text PDF

Constructed stormwater ponds mitigate runoff volumes and pollution, and provide other ecosystem services, such as supporting biodiversity, but these services attracted relatively less attention. The impacts of the pollution levels in the water column and sediments, the physical characteristics of ponds, and the presence of amphibians on the macroinvertebrate community composition and biodiversity were explored in twelve stormwater ponds in Norway. Also, the similarities between macroinvertebrate, zooplankton and plant communities were explored.

View Article and Find Full Text PDF

Peatlands in northern latitudes sequester one third of the world's soil organic carbon. Mineral dusts can affect the primary productivity of terrestrial systems through nutrient transport but this process has not yet been documented in these peat-rich regions. Here we analysed organic and inorganic fractions of an 8900-year-old sequence from Store Mosse (the "Great Bog") in southern Sweden.

View Article and Find Full Text PDF

An estimated 2.4 billion people lack access to improved sanitation which has devastating consequences for human health and the environment. Understanding what constitute sanitation demand is crucial for accelerating the spread of improved sanitation.

View Article and Find Full Text PDF

Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg, comparable to the Pt content in road dust of other medium-sized cities.

View Article and Find Full Text PDF

Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown.

View Article and Find Full Text PDF

Recently, increased attention has been paid to biodiversity conservation provided by blue-green solutions such as engineered ponds that are primarily established for water treatment and flood control. However, little research has been done to analyse the factors that affect biodiversity in such ponds. The purpose of this study was to evaluate the influence of environmental factors on aquatic biodiversity, mainly macroinvertebrate communities, in road sedimentation ponds in order to provide a foundation for recommendations on aquatic biodiversity conservation.

View Article and Find Full Text PDF
Article Synopsis
  • Cadmium is a toxic metal that can cause cancer, but its specific mechanisms of toxicity are not fully understood.
  • The study shows that cadmium causes certain proteins in living cells to clump together, particularly those that are still being made or folded.
  • The aggregation of these proteins can lead to further misfolding, contributing to cadmium's harmful effects and potentially linking it to diseases related to protein folding.
View Article and Find Full Text PDF

Wastewater management in developing countries is a challenge, especially in small towns with rapid population growth. This study aims at assessing the performance and management of five treatment plants (TPs) in rural areas of Cochabamba, Bolivia. Pollutants' concentrations, wastewater flows, hydraulic and organic loads and hydraulic retention times were determined in three small treatment plants (2000-10,000 population equivalent [p.

View Article and Find Full Text PDF

A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again.

View Article and Find Full Text PDF

Diffusion-based passive samplers are increasingly used for water quality monitoring. While the overall method robustness and reproducibility for passive samplers in water are widely reported, there has been a lack of a detailed description of uncertainty sources. In this paper an uncertainty budget for the determination of fully labile Cu in water using a DGT passive sampler is presented.

View Article and Find Full Text PDF

Metals in urban runoff water need to be monitored in order to estimate fluxes and assess their impact on the aquatic environment. Passive sampling is a useful and reliable emerging tool for measuring time averaged concentrations of metals in water bodies. This paper describes the deployment of a passive sampler to measure Cu, Ni and Zn in an urban runoff water treatment facility.

View Article and Find Full Text PDF

A passive sampler device for the kinetic accumulation of nitrate (NO3(-)) and phosphate (HPO4(2-)) in water was developed and calibrated. The sampler incorporates an ion-exchange disk as the receiving phase and selectively collects nitrate and phosphate at sampling rates of 197 ± 43 and 75 ± 12 mL per day, respectively. Minimum exposure times under nutrient rich and nutrient poor conditions were estimated to be 3 and 27 days respectively for phosphate and 1 and 7 days respectively for nitrate.

View Article and Find Full Text PDF
Article Synopsis
  • A microbial bioelectrochemical system (BES) utilizes microorganisms to oxidize organic matter on the anode, enabling the recovery of metals from waste leachate.
  • The study successfully recovered copper, lead, cadmium, and zinc sequentially by controlling the cathode potential at different voltage levels during the process.
  • This innovative approach demonstrates the potential of BES for recovering metals from various waste sources beyond just municipal incineration ash, such as metallurgical wastewaters and landfill leachates.
View Article and Find Full Text PDF

The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters.

View Article and Find Full Text PDF