Publications by authors named "Sebastien Monfette"

Simple aryl chlorides represent challenging substrates in iron-catalyzed borylation. A combination of Li[B(Bu)pin-Bpin] as the borylating reagent and a catalyst formed in situ from iron(II) triflate and the commercially available N-heterocyclic carbene ligand, IMes, gives significantly improved activity and a much broader scope than previously reported iron-based catalysts. Iron triflate is also a good precatalyst for the borylation of aryl triflates─a previously unreported transformation─and in these cases the IMes ligand is not required.

View Article and Find Full Text PDF

Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1.

View Article and Find Full Text PDF

Fluoroalkyl fragments have played a critical role in the design of pharmaceutical and agrochemical molecules in recent years due to the enhanced biological properties of fluorinated molecules compared to their non-fluorinated analogues. Despite the potential advantages conferred by incorporating a difluoromethyl group in organic compounds, industrial adoption of difluoromethylation methods lags behind fluorination and trifluoromethylation. This is due in part to challenges in applying common difluoromethyl sources towards industrial applications.

View Article and Find Full Text PDF

Although screening technology has heavily impacted the fields of metal catalysis and drug discovery, its application to the discovery of new catalyst classes has been limited. The diversity of on- and off-cycle pathways, combined with incomplete mechanistic understanding, means that screens of potential new ligands have thus far been guided by intuitive analysis of the metal binding potential. This has resulted in the discovery of new classes of ligands, but the low hit rates have limited the use of this strategy because large screens require considerable cost and effort.

View Article and Find Full Text PDF
Article Synopsis
  • Cross-electrophile coupling has become a key method for creating carbon-carbon bonds, typically facilitated by nickel complexes with nitrogen-rich ligands, particularly bipyridines.
  • Despite advancements, accurately predicting and designing optimal ligands remains difficult.
  • The study outlines a computational approach to create a ligand library, linking ligand characteristics to reaction outcomes, and achieving a 5-fold increase in selectivity for product formation with new nitrogen-substituted ligands.
View Article and Find Full Text PDF

This work presents a generalizable computer vision (CV) and machine learning model that is used for automated real-time monitoring and control of a diverse array of workup processes. Our system simultaneously monitors multiple physical outputs (, liquid level, homogeneity, turbidity, solid, residue, and color), offering a method for rapid data acquisition and deeper analysis from multiple visual cues. We demonstrate a single platform (consisting of CV, machine learning, real-time monitoring techniques, and flexible hardware) to monitor and control vision-based experimental techniques, including solvent exchange distillation, antisolvent crystallization, evaporative crystallization, cooling crystallization, solid-liquid mixing, and liquid-liquid extraction.

View Article and Find Full Text PDF

We present an automated droplet reactor platform possessing parallel reactor channels and a scheduling algorithm that orchestrates all of the parallel hardware operations and ensures droplet integrity as well as overall efficiency. We design and incorporate all of the necessary hardware and software to enable the platform to be used to study both thermal and photochemical reactions. We incorporate a Bayesian optimization algorithm into the control software to enable reaction optimization over both categorical and continuous variables.

View Article and Find Full Text PDF

The high cost and negative environmental impact of precious metal catalysts has led to increased demand for nonprecious alternatives for widely practiced reactions such as the Suzuki-Miyaura coupling (SMC). Ni-catalyzed versions of this reaction have failed to achieve high reactivity with Lewis-basic arylboron nucleophiles, especially pinacolboron esters. We describe the development of (PPhMe)NiCl as an inexpensive and air-stable precatalyst that addresses this challenge.

View Article and Find Full Text PDF

The new complex Ru(NCO)(2)(IMes)(py)(2)(=CHPh) is the first ruthenium metathesis initiator capable of fast, controlled living polymerization of functionalized norbornenes at room temperature, irrespective of monomer bulk.

View Article and Find Full Text PDF

Enantiopure C(1)-symmetric bis(imino)pyridine cobalt chloride, methyl, hydride, and cyclometalated complexes have been synthesized and characterized. These complexes are active as catalysts for the enantioselective hydrogenation of geminal-disubstituted olefins.

View Article and Find Full Text PDF

Reported is the first study of the influence of reactor configuration on the efficiency of a challenging ring-closing metathesis (RCM) reaction. With the intention of increasing the generality of RCM scaleup and reducing its dependence on substrate modification, macrocyclization of an unmodified, low effective-molarity diene was explored using different reactor types, in conjunction with a commercial, homogeneous Grubbs catalyst. Optimized performance is compared for a conventional batch reactor (BR), a continuous plug-flow reactor (PFR), and a continuous stirred-tank reactor (CSTR).

View Article and Find Full Text PDF