Today, the palindromic analysis of biological sequences, based exclusively on the study of "mirror" symmetry properties, is almost unavoidable. However, other types of symmetry, such as those present in friezes, could allow us to analyze binary sequences from another point of view. New tools, such as symmetropy and symmentropy, based on new types of palindromes allow us to discriminate binarized 1/f noise sequences better than Lempel-Ziv complexity.
View Article and Find Full Text PDFComput Math Methods Med
March 2017
Robust detection of the smallest circulating cerebral microemboli is an efficient way of preventing strokes, which is second cause of mortality worldwide. Transcranial Doppler ultrasound is widely considered the most convenient system for the detection of microemboli. The most common standard detection is achieved through the Doppler energy signal and depends on an empirically set constant threshold.
View Article and Find Full Text PDFThe development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2014
Capacitive micromachined ultrasonic transducers (cMUTs) are a promising alternative to the piezoelectric transducer. However, their native nonlinear behavior is a limitation for their use in medical ultrasound applications. Several methods based on the pre-compensation of a preselected input voltage have been proposed to cancel out the harmonic components generated.
View Article and Find Full Text PDFCharacterizing fetal wellbeing with a Doppler ultrasound device requires computation of a score based on fetal parameters. In order to analyze the parameters derived from the fetal heart rate correctly, an accuracy of 0.25 beats per minute is needed.
View Article and Find Full Text PDFSub- and ultraharmonic (SUH) ultrasound contrast imaging is an alternative modality to the second harmonic imaging, since, in specific conditions it could produce high quality echographic images. This modality enables the contrast enhancement of echographic images by using SUH present in the contrast agent response but absent from the nonperfused tissue. For a better access to the components generated by the ultrasound contrast agents, nonlinear techniques based on Hammerstein model are preferred.
View Article and Find Full Text PDFUltrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR) is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible.
View Article and Find Full Text PDFSub- and ultraharmonics generation by ultrasound contrast agents makes possible sub- and ultraharmonics imaging to enhance the contrast of ultrasound images and overcome the limitations of harmonic imaging. In order to separate different frequency components of ultrasound contrast agents signals, nonlinear models like single-input single-output (SISO) Volterra model are used. One important limitation of this model is its incapacity to model sub- and ultraharmonic components.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2012
Contrast imaging has significantly improved clinical diagnosis by increasing the contrast-to-tissue ratio after microbubble injection. Pulse inversion imaging is the most commonly used contrast imaging technique because it greatly increases the contrast-to-tissue ratio by extracting microbubble nonlinearities. The main purpose of our study was to propose an automatic technique providing the best contrast- to-tissue ratio throughout the experiment.
View Article and Find Full Text PDFThe purpose of this study was to validate through experiments that frequency modulation (FM) of microembolic signatures was principally due to the radiation force. Several experiments were required to prove that such a frequency modulation originates from microdisplacements induced by the radiation force acting on microbubbles. The first experiment was performed to verify that the diffraction effects due to the presence of a skull did not disturb the acoustic field appreciably and to validate that a radiation force in the brain was sufficient to create a detectable microdisplacement.
View Article and Find Full Text PDFThe purpose of this study was to reveal the cause of frequency modulation (FM) present in microembolic Doppler ultrasound signals. This novel explanation should help the development of sensitive microembolus discrimination techniques. We suggest that the frequency modulation detected is caused by the ultrasonic radiation force (URF) acting directly on microemboli.
View Article and Find Full Text PDF