Publications by authors named "Sebastien M Joruiz"

Article Synopsis
  • Researchers found that changes in a specific part of the p53 gene, called p53β, might be important in causing some types of cancer.
  • They discovered a special change (stop-lost variant) in this gene in four families with a history of certain cancers like colorectal, breast, and thyroid cancer.
  • This change affects how p53β works and can increase cancer risk, showing that we need to look closely at all parts of the p53 gene to better understand cancer and who might be at risk.
View Article and Find Full Text PDF

Despite being mutated in 92% of TP53 mutant cancers, how mutations on p53 isoforms affect their activities remain largely unknown. Therefore, exploring the effect of mutations on p53 isoforms activities is a critical, albeit unexplored area in the p53 field. In this article, we report for the first time a mutant Δ133p53α-specific pathway which increases IL4I1 and IDO1 expression and activates AHR, a tumor-promoting mechanism.

View Article and Find Full Text PDF

The gene is a critical tumor suppressor and key determinant of cell fate which regulates numerous cellular functions including DNA repair, cell cycle arrest, cellular senescence, apoptosis, autophagy and metabolism. In the last 15 years, the p53 pathway has grown in complexity through the discovery that differentially expresses twelve p53 protein isoforms in human cells with both overlapping and unique biologic activities. Here, we summarize the current knowledge on the Δ133p53 isoforms (Δ133p53α, Δ133p53β and Δ133p53γ), which are evolutionary derived and found only in human and higher order primates.

View Article and Find Full Text PDF

Prostate cancer is the second most common cancer in men, for which there are no reliable biomarkers or targeted therapies. Here we demonstrate that elevated levels of Δ133TP53β isoform characterize prostate cancers with immune cell infiltration, particularly T cells and CD163+ macrophages. These cancers are associated with shorter progression-free survival, Gleason scores ≥ 7, and an immunosuppressive environment defined by a higher proportion of PD-1, PD-L1 and colony-stimulating factor 1 receptor (CSF1R) positive cells.

View Article and Find Full Text PDF

As tumor protein 53 (p53) isoforms have tumor-promoting, migration, and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full-length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT-qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumor-associated macrophage content, and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163-positive macrophages and wild-type TP53.

View Article and Find Full Text PDF

is conventionally thought to prevent cancer formation and progression to metastasis, while mutant has transforming activities. However, in the clinic, mutation status does not accurately predict cancer progression. Here we report, based on clinical analysis corroborated with experimental data, that the p53 isoform Δ133p53β promotes cancer cell invasion, regardless of mutation status.

View Article and Find Full Text PDF

It is poorly understood how a single protein, p53, can be responsive to so many stress signals and orchestrates very diverse cell responses to maintain/restore cell/tissue functions. The uncovering that TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice variants (isoforms) provides an explanation to its pleiotropic biological activities. Here, we summarize a decade of research on p53 isoforms.

View Article and Find Full Text PDF