Publications by authors named "Sebastien Gauvrit"

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored.

View Article and Find Full Text PDF

Cardiac arrhythmia, or irregular heart rhythm, is associated with morbidity and mortality and is described as one of the most important future public health challenges. Therefore, developing new models of cardiac arrhythmia is critical for understanding disease mechanisms, determining genetic underpinnings, and developing new therapeutic strategies. In the last few decades, the zebrafish has emerged as an attractive model to reproduce in vivo human cardiac pathologies, including arrhythmias.

View Article and Find Full Text PDF

Rationale: The transcription factor NFATC1 (nuclear factor of activated T-cell 1) has been implicated in cardiac valve formation in humans and mice, but we know little about the underlying mechanisms. To gain mechanistic understanding of cardiac valve formation at single-cell resolution and insights into the role of NFATC1 in this process, we used the zebrafish model as it offers unique attributes for live imaging and facile genetics.

Objective: To understand the role of Nfatc1 in cardiac valve formation.

View Article and Find Full Text PDF
Article Synopsis
  • Significant advances have been made in understanding how foregut organs develop, but the molecular processes behind hepatopancreatic ductal (HPD) system formation are still unclear.
  • This study reveals that the transcription factor Hhex is crucial for specifying HPD progenitors in zebrafish, and its absence leads to defective HPD formation.
  • The research indicates that blood vessels influence the patterning of the HPD but are not needed for specifying progenitors, and that Hhex plays vital roles in both the endoderm and yolk syncytial layer (YSL) during HPD development.
View Article and Find Full Text PDF

Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates.

View Article and Find Full Text PDF

Zebrafish have a remarkable capacity to regenerate their heart. Efficient replenishment of lost tissues requires the activation of different cell types including the epicardium and endocardium. A complex set of processes is subsequently needed to support cardiomyocyte repopulation.

View Article and Find Full Text PDF

The mechanisms that allow cells to bypass anti-vascular endothelial growth factor A (VEGFA) therapy remain poorly understood. Here we use zebrafish to investigate this question and first show that mutants display a severe vascular phenotype that can surprisingly be rescued to viability by messenger RNA injections at the 1-cell stage. Using mutants as an in vivo test tube, we found that zebrafish Vegfbb, Vegfd, and Pgfb can also rescue these animals to viability.

View Article and Find Full Text PDF

During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets.

View Article and Find Full Text PDF

Background: Dicer is an RNase III enzyme that cleaves double stranded RNA and generates functional interfering RNAs that act as important regulators of gene and protein expression. Dicer plays an essential role during mouse development because the deletion of the dicer gene leads to embryonic death. In addition, dicer-dependent interfering RNAs regulate postnatal angiogenesis.

View Article and Find Full Text PDF