Publications by authors named "Sebastien Dufresne"

Background: Advances in pediatric oncology have significantly increased survival rates, yet have introduced challenges in managing long-term treatment side effects. This study process introduces an interdisciplinary clinical intervention program rooted in the family resilience framework, aimed at improving well-being across the cancer trajectory for children and their families, especially those in Canadian communities far from specialized oncology centers with limited access to resources.

Methods: Employing an intervention mapping approach, this program collaboratively involves patients, families, professionals, and researchers.

View Article and Find Full Text PDF

Background: Statins are the leading lipid-lowering drugs, reducing blood cholesterol by controlling its synthesis. Side effects are linked to the use of statins, in particular statin-associated muscle symptoms (SAMS). Some data suggest that vitamin D supplementation could reduce SAMS.

View Article and Find Full Text PDF

Background And Aims: Statin-associated muscle symptoms (SAMS) are frequently reported. Nevertheless, few data on objective measures of muscle function are available. Recent data suggesting an important nocebo effect with statin use could confound such effects.

View Article and Find Full Text PDF

Background: Low back pain is common during pregnancy. Lumbar stabilization and stretching exercises are recommended to treat low back pain in the general population. However, few studies have applied the effects of these two interventions in pregnant women with low back pain.

View Article and Find Full Text PDF

The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration.

View Article and Find Full Text PDF

Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology.

View Article and Find Full Text PDF

Anti-inflammatory modalities are commonly used for the treatment of various musculoskeletal injuries. Although inflammation was originally believed to interfere with skeletal muscle regeneration, several recent studies have highlighted the beneficial effects of inflammatory cells on muscle healing. This discrepancy is attributable to an evolving understanding of the complex inflammatory process.

View Article and Find Full Text PDF

Background: The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development.

View Article and Find Full Text PDF

Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because β-agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with β-agonists and potentiates their positive effects on skeletal muscles.

View Article and Find Full Text PDF

Background: Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles.

View Article and Find Full Text PDF

The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles.

View Article and Find Full Text PDF

Muscle injuries are very frequent and are associated with an inflammatory reaction that varies in intensity. Classically the inflammatory process was considered harmful for muscle regeneration and anti-inflammatory agents are still part of a conventional therapy. Over the last decades, it has been demonstrated under some conditions that the inflammatory response could be detrimental for the musculoskeletal tissue.

View Article and Find Full Text PDF

Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers.

View Article and Find Full Text PDF

Objective: To evaluate whether a 12-week supervised exercise program promotes an active lifestyle throughout pregnancy in pregnant women with obesity.

Methods: In this preliminary randomised trial, pregnant women (body mass index ≥ 30 kg/m2) were allocated to either standard care or supervised training, from 15 to 27 weeks of gestation. Physical activity was measured by accelerometry at 14, 28 and 36 weeks, while fitness (oxygen consumption (VO2) at the anaerobic threshold), nutrition (caloric intake and macronutrients percentage) and anthropometry were assessed at 14 and 28 weeks of gestation.

View Article and Find Full Text PDF

Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles.

View Article and Find Full Text PDF

In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.

View Article and Find Full Text PDF

Buruli ulcer (BU), which is caused by Mycobacterium ulcerans (MU), is an endemic and neglected tropical disease that affects mostly subcutaneous tissues. Skeletal muscle under infected skin is also subject to serious dysfunctions and contractures. The goal of this study was to investigate the effects of an infection with the wild-type M.

View Article and Find Full Text PDF