Publications by authors named "Sebastien Duc"

Purpose: Previous research suggests that the percentage of maximal oxygen uptake attained and the time it is sustained close to maximal oxygen uptake (eg, >90%) can serve as a good criterion to judge the effectiveness of a training stimulus. The aim of this study was to investigate the acute effects of adding vibration during varied high-intensity interval training (HIIT) sessions on physiological and neuromuscular responses.

Methods: Twelve well-trained cyclists completed a counterbalanced crossover protocol, wherein 2 identical varied HIIT cycling sessions were performed with and without intermittent vibration to the lower-intensity workloads of the work intervals (6 × 5-min work intervals and 2.

View Article and Find Full Text PDF

Improper medio-lateral distance between the feet in cycling can increase the risk of injuries and decrease performance due to hip/knee/ankle misalignment in the frontal plane. The objective of this study was to measure the impact of pedal spacing changes during pedalling on the biomechanical, physiological, and subjective variables of people with different morphologies. Twenty-two cyclists were divided into two groups according to their pelvis width (narrow and wide).

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate the effect of 12 weeks of use of orthopedic insoles equipped with a metatarsal retro-capital bar (MRCB) on plantar pressure under the feet and lower limb kinematic variables during running.

Methods: Two groups of 10 runners used for 12 weeks while running orthopedic insoles without correction or equipped with a MRCB. All participants performed successively a standing posture (CoP displacement) test and a running test at 11 km.

View Article and Find Full Text PDF

Purpose: Bike-fitting methods based on knee kinematics have been proposed to determine optimal saddle height. The Holmes method recommends that knee angle be between 25° and 35° when the pedal is at bottom dead centre in static. Other authors advocate knee angle of 30-40° during maximum knee extension while pedalling.

View Article and Find Full Text PDF

Introduction: Pedaling technique which can be defined as the way the cyclists pedal, has been mostly studied in lab conditions from pedal force kinetic, joints kinematic, and/or muscular activity patterns because it is considered as a main factor for gross efficiency (GE). Although this method is much controversial, its quality has extensively been evaluated from the index of pedal force effectiveness (IFE), i.e.

View Article and Find Full Text PDF

Methods based on inseam length (IL) for saddle height adjustment in cycling are frequently employed. However, these methods were designed for medium-sized people. The aim of this study was to evaluate knee angle during pedalling by 2D video analysis and perceived comfort using a subjective scale under three saddle height conditions: (1) self-selected saddle height, (2) Genzling method (0.

View Article and Find Full Text PDF

Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises.

View Article and Find Full Text PDF

Duc, S, Rønnestad, BR, and Bertucci, W. Adding whole-body vibration to preconditioning squat exercise increases cycling sprint performance. J Strength Cond Res 34(5): 1354-1361, 2020-This study investigated the effect of performing a preconditioning exercise with or without whole-body vibration (WBV) on a subsequent cycling sprint performance.

View Article and Find Full Text PDF

Whole body vibration (WBV) is used as a training method but its physical risk is not yet clear. Hence, the aim of this study is to assess the exposure to WBV by a measure of acceleration at the lower limb under dynamic and static postural conditions. The hypothesis of this paper is that this assessment is influenced by the frequency, position, and movement of the body.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effect of whole body vibration in oxygen uptake during intense squatting exercise with an added weight and whole body vibration compared with the same exercise without vibration.

Methods: Nine male sub- jects performed three trials of dynamic squatting with an additional load of 50% of their body weight during 3 min. One trial without vibration, one trial with the frequency of 40 Hz and amplitude of 2 mm and one trial with the frequency of 40 Hz and amplitude of 4 mm.

View Article and Find Full Text PDF

The capacity to predict the heart rate (HR) and speed at the first (VT1) and second (VT2) ventilatory thresholds was evaluated during an incremental ski-mountaineering test using heart rate variability (HRV). Nine skiers performed a field test to exhaustion on an alpine skiing track. VT1 and VT2 were individually determined by visual analysis from gas exchanges (VT1V and VT2V) and time-varying spectral HRV analysis (VT1fH, VT2fH and VT2H).

View Article and Find Full Text PDF

This study was designed to examine the biomechanical and physiological responses between cycling on the Axiom stationary ergometer (Axiom, Elite, Fontaniva, Italy) vs. field conditions for both uphill and level ground cycling. Nine cyclists performed cycling bouts in the laboratory on an Axiom stationary ergometer and on their personal road bikes in actual road cycling conditions in the field with three pedaling cadences during uphill and level cycling.

View Article and Find Full Text PDF

Purpose: The ErgomoPro (EP) is a power meter that measures power output (PO) during outdoor and indoor cycling via 2 optoelectronic sensors located in the bottom bracket axis. The aim of this study was to determine the validity and the reproducibility of the EP compared with the SRM crank set and Powertap hub (PT).

Methods: The validity of the EP was tested in the laboratory during 8 submaximal incremental tests (PO: 100 to 400 W), eight 30-min submaximal constant-power tests (PO = 180 W), and 8 sprint tests (PO > 750 W) and in the field during 8 training sessions (time: 181 +/- 73 min; PO: approximately 140 to 160 W).

View Article and Find Full Text PDF