Publications by authors named "Sebastien Degorce"

PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper.

View Article and Find Full Text PDF

The NLRP3 inflammasome is a multiprotein complex that plays a critical role in activating the immune system in response to danger signals. Small molecule agonists of NLRP3 may offer clinical benefits in cancer immunology either as a monotherapy or in combination with checkpoint blockade, where it is hypothesised that their application can help to initiate an antitumor immune response. In this study, we report the discovery of quinazolines and 8-azaquinazolines as NLRP3 agonists and their chemical optimization to afford compounds with oral bioavailability in mice.

View Article and Find Full Text PDF

The structure-based design of small-molecule inhibitors targeting protein-protein interactions (PPIs) remains a huge challenge as the drug must bind typically wide and shallow protein sites. A PPI target of high interest for hematological cancer therapy is myeloid cell leukemia 1 (Mcl-1), a prosurvival guardian protein from the Bcl-2 family. Despite being previously considered undruggable, seven small-molecule Mcl-1 inhibitors have recently entered clinical trials.

View Article and Find Full Text PDF

In this article, we report the discovery of a series of pyrimidopyridones as inhibitors of IRAK4 kinase. From a previously disclosed 5-azaquinazoline series, we found that switching the pyridine ring for an N-substituted pyridone gave a novel hinge binding scaffold which retained potency against IRAK4. Importantly, introduction of the carbonyl established an internal hydrogen bond with the 4-NH, establishing a conformational lock and allowing truncation of the large basic substituent to a 1-methylcyclopyl group.

View Article and Find Full Text PDF

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • - This article discusses the enhancement of human drug clearance for a group of compounds known as 5-azaquinazolines through targeted chemical modifications.
  • - Researchers conducted extensive studies on drug metabolism and pharmacokinetics (DMPK) to address issues related to high metabolism by Aldehyde Oxidase and inconsistencies in drug clearance rates observed in liver models.
  • - The efforts led to the identification of a specific compound, 5-azaquinazoline 35, which not only demonstrated strong selectivity for the target IRAK4 but also showed promising combined effects against a particular type of lymphoma when used alongside the drug acalabrutinib.
View Article and Find Full Text PDF

We report the first disclosure of IRAK3 degraders in the scientific literature. Taking advantage of an opportune byproduct obtained during our efforts to identify IRAK4 inhibitors, we identified ready-to-use, selective IRAK3 ligands in our compound collection with the required properties for conversion into proteolysis-targeting chimera (PROTAC) degraders. This work culminated with the discovery of PROTAC , which we demonstrated to be a potent and selective degrader of IRAK3 after 16 h in THP1 cells.

View Article and Find Full Text PDF

In this article, we report the discovery of a series of 5-azaquinazolines as selective IRAK4 inhibitors. From modestly potent quinazoline , we introduced a 5-aza substitution to mask the 4-NH hydrogen bond donor (HBD). This allowed us to substitute the core with a 2-aminopyrazole, which showed large gains in cellular potency despite the additional formal HBD.

View Article and Find Full Text PDF

We have conducted an analysis of azaspiro[3.3]heptanes used as replacements for morpholines, piperidines, and piperazines in a medicinal chemistry context. In most cases, introducing a spirocyclic center lowered the measured log of the corresponding molecules by as much as -1.

View Article and Find Full Text PDF

Herein, we report the identification and synthesis of a series of tricyclic indazoles as a novel class of selective estrogen receptor degrader antagonists. Replacement of a phenol, present in our previously reported tetrahydroisoquinoline scaffold, with an indazole group led to the removal of a reactive metabolite signal in an in vitro glutathione trapping assay. Further optimization, guided by X-ray crystal structures and NMR conformational work, varied the alkyl side chain and pendant aryl group and resulted in compounds with low turnover in human hepatocytes and enhanced chemical stability.

View Article and Find Full Text PDF

In this article, we report our investigation of a phenomenon by which bridging morpholines across the ring with one-carbon tethers leads to a counterintuitive reduction in lipophilicity. This effect was also found to occur in piperazines and piperidines and lowered the measured log D of the bridged molecules by as much as -0.8 relative to their unbridged counterparts.

View Article and Find Full Text PDF

Inhibition of ataxia-telangiectasia mutated (ATM) during radiotherapy of glioblastoma multiforme (GBM) may improve tumor control by short-circuiting the response to radiation-induced DNA damage. A major impediment for clinical implementation is that current inhibitors have limited central nervous system (CNS) bioavailability; thus, the goal was to identify ATM inhibitors (ATMi) with improved CNS penetration. Drug screens and refinement of lead compounds identified AZ31 and AZ32.

View Article and Find Full Text PDF

ATM inhibitors, such as 7, have demonstrated the antitumor potential of ATM inhibition when combined with DNA double-strand break-inducing agents in mouse xenograft models. However, the properties of 7 result in a relatively high predicted clinically efficacious dose. In an attempt to minimize attrition during clinical development, we sought to identify ATM inhibitors with a low predicted clinical dose (<50 mg) and focused on strategies to increase both ATM potency and predicted human pharmacokinetic half-life (predominantly through the increase of volume of distribution).

View Article and Find Full Text PDF

We have developed a series of orally efficacious IRAK4 inhibitors, based on a scaffold hopping strategy and using rational structure based design. Efforts to tackle low permeability and high efflux in our previously reported pyrrolopyrimidine series (Scott et al., 2017) led to the identification of pyrrolotriazines which contained one less formal hydrogen bond donor and were intrinsically more lipophilic.

View Article and Find Full Text PDF

Herein we report the optimization of a series of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) using X-ray crystal structures and structure based design to identify and optimize our scaffold. Compound 28 demonstrated a favorable physicochemical and kinase selectivity profile and was identified as a promising in vivo tool with which to explore the role of IRAK4 inhibition in the treatment of mutant MYD88 diffuse large B-cell lymphoma (DLBCL). Compound 28 was shown to be capable of demonstrating inhibition of NF-κB activation and growth of the ABC subtype of DLBCL cell lines in vitro at high concentrations but showed greater effects in combination with a BTK inhibitor at lower concentrations.

View Article and Find Full Text PDF

Attempts to lock the active conformation of compound 4, a PI3Kβ/δ inhibitor (PI3Kβ cell IC 0.015μM), led to the discovery of a series of 8-(1-phenylpyrrolidin-2-yl)-6-carboxamide-2-morpholino-4H-chromen-4-ones, which showed high levels of potency and selectivity as PI3Kβ/δ inhibitors. Compound 10 proved exquisitely potent and selective: PI3Kβ cell IC 0.

View Article and Find Full Text PDF

A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo.

View Article and Find Full Text PDF

Optimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.

View Article and Find Full Text PDF

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kβ/δ inhibitor: PI3Kβ cell IC50 0.012 μM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047 μM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties.

View Article and Find Full Text PDF

A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.

View Article and Find Full Text PDF

A growing number of early discovery collaborative agreements are being put in place between large pharma companies and partners in which the rights for assets can reside with a partner, exclusively or jointly. Our corporate screening collection, like many others, was built on the premise that compounds generated in-house and not the subject of paper or patent disclosure were proprietary to the company. Collaborative screening arrangements and medicinal chemistry now make the origin, ownership rights and usage of compounds difficult to determine and manage.

View Article and Find Full Text PDF

A weak screening hit with suboptimal physicochemical properties was optimized against PFKFB3 kinase using critical structure-guided insights. The resulting compounds demonstrated high selectivity over related PFKFB isoforms and modulation of the target in a cellular context. A selected example demonstrated exposure in animals following oral dosing.

View Article and Find Full Text PDF

A novel estrogen receptor down-regulator, 7-hydroxycoumarin (5, SS5020), has been reported with antitumor effects against chemically induced mammary tumors. Here, we report on our own investigation of 7-hydroxycoumarins as potential selective estrogen receptor down-regulators, which led us to the discovery of potent down-regulating antagonists, such as 33. Subsequent optimization and removal of the 7-hydroxy group led to coumarin 59, which had increased potency and improved rat bioavailability relative to SS5020.

View Article and Find Full Text PDF