Cytotoxicity of nanoparticles is primarily assessed on cells grown in plastic culture plates, a mechanical environment that is a million times stiffer than most of the human tissues. Here we question whether nanoparticles cytotoxicity is sensitive to the stiffness of the extracellular environment. To this end, we compare the metabolic activity, the proliferation and death rates, and the motility of a glioblastoma cancer cell line and a fibroblast cell line exposed to gold-coated NiFe microdiscs when grown on a glass substrate or on a soft substrate whose mechanical properties are close to physiology.
View Article and Find Full Text PDFThe directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)--polystyrene (PDMSB--PS), with a 9 nm half pitch.
View Article and Find Full Text PDFIn this work, we investigated the self-assembly of a lamellar block copolymer (BCP) under different wetting conditions. We explored the influence of the chemical composition of under-layers and top-coats on the thin film stability, self-assembly kinetics and BCP domain orientation. Three different chemistries were chosen for these surface affinity modifiers and their composition was tuned in order to provide either neutral wetting (i.
View Article and Find Full Text PDFDirected self-assembly of block copolymers (BCP) is a very attractive technique for the realization of functional nanostructures at high resolution. In this work, we developed full dry-etching strategies for BCP nanolithography using an 18 nm pitch lamellar silicon-containing block copolymer. Both an oxidizing Ar/O plasma and a nonoxidizing H/N plasma are used to remove the topcoat material of our BCP stack and reveal the perpendicular lamellae.
View Article and Find Full Text PDF