Publications by authors named "Sebastien Calvignac"

The oncogenic Merkel cell polyomavirus (MCPyV) infects humans worldwide, but little is known about the occurrence of viruses related to MCPyV in the closest phylogenetic relatives of humans, great apes. We analyzed samples from 30 wild chimpanzees and one captive gorilla and identified two new groups of polyomaviruses (PyVs). These new viruses are by far the closest relatives to MCPyV described to date, providing the first evidence of the natural occurrence of PyVs related to MCPyV in wild great apes.

View Article and Find Full Text PDF

Molecular tools have become prominent in ecology and evolution. A target of choice for molecular ecologists and evolutionists is mitochondrial DNA (mtDNA), whose many advantages have also convinced broad-scale, pragmatic programmes such as barcode initiatives. Of course, mtDNA is also of interest to human geneticists investigating mitochondrial diseases.

View Article and Find Full Text PDF

Simian retroviruses are precursors of all human retroviral pathogens. However, little is known about the prevalence and coinfection rates or the genetic diversity of major retroviruses-simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus type 1 (STLV-1), and simian foamy virus (SFV)-in wild populations of nonhuman primates. Such information would contribute to the understanding of the natural history of retroviruses in various host species.

View Article and Find Full Text PDF

The palindromic sequence motifs (CANNTG) known as E boxes are considered as binding sites for the basic helix-loop-helix (bHLH) class of DNA-binding proteins. Their presence has been reported in the long terminal repeats (LTR) of the HIV-1 and HTLV-1 proviruses. Their close proximity with the TATA region of both LTRs indicates that the bHLH proteins may act as important regulators of the function of proviral transcription.

View Article and Find Full Text PDF

Background: Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy.

View Article and Find Full Text PDF

The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World.

View Article and Find Full Text PDF

Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members.

View Article and Find Full Text PDF

The molecular identification of proviruses from ancient tissues (and particularly from bones) remains a contentious issue. It can be expected that the copy number of proviruses will be low, which magnifies the risk of contamination with retroviruses from exogenous sources. To assess the feasibility of paleoretrovirological studies, we attempted to identify proviruses from early 20th century bones of museum specimens while following a strict ancient DNA methodology.

View Article and Find Full Text PDF

Pigmy elephants inhabited the islands from the Mediterranean region during the Pleistocene period but became extinct in the course of the Holocene. Despite striking distinctive anatomical characteristics related to insularity, some similarities with the lineage of extant Asian elephants have suggested that pigmy elephants could be most probably seen as members of the genus Elephas. Poulakakis et al (2006) have recently challenged this view by recovering a short mtDNA sequence from an 800 000 year old fossil of the Cretan pigmy elephant (Elephas creticus).

View Article and Find Full Text PDF