Publications by authors named "Sebastien Boutry"

The Water Framework Directive (WFD) requires member states to routinely assess the river ecological status using community-based indices. However, there is still a lack of published WFD-compliant methods for the French West Indies, especially using diatom-based indices. Martinique and Guadeloupe exhibit diverse landscapes shaped by their complex geological history and tropical climatic conditions.

View Article and Find Full Text PDF

It is now widely recognized that the sampling rate of Polar Organic Chemical Integrative Samplers (POCIS) is significantly affected by flow velocity, which can cause a consequent bias when determining time-weighted average concentrations (TWAC). We already observed the desorption of deisopropylatrazine (DIA) over time when added to the receiving phase of a POCIS. This desorption rate was particularly influenced by flow velocity, in an agitated water environment in situ.

View Article and Find Full Text PDF

This paper presents a multi-step methodology to identify relationships between integrative pesticide quantifications and land uses on a given watershed of the Adour-Garonne Basin (Southwestern France). In fact, a large amount of pesticide concentration data was collected from 51 sites located in the Adour-Garonne Basin for a 1 year monitoring period in 2016. The sampling devices used here were polar organic chemical integrative samplers (POCIS), which provided time-weighted average concentration estimates.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how to see alizarin dye in fish fins, especially in eels, because it can be tricky due to a special protein called eelGFP.
  • They tested three new methods to see how well they could detect the dye in living European glass eels.
  • The best results came from a method called epifluorometry, which was able to find 100% of the marked eels without too much interference from other signals.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents.

View Article and Find Full Text PDF

This work describes the preparation, characterization and functionalization with magnetic nanoparticles of a bone tissue-mimetic scaffold composed of collagen and hydroxyapatite obtained through a biomineralization process. Bone remodeling takes place over several weeks and the possibility to follow it in a quick and reliable way is still an outstanding issue. Therefore, this work aims to produce an implantable material that can be followed during bone regeneration by using the existing non-invasive imaging techniques (MRI).

View Article and Find Full Text PDF

The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd chelate (, Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions.

View Article and Find Full Text PDF

Bimodal sub-5 nm superparamagnetic iron oxide nanoparticles (SPIO-5) coated with polyethylene glycol of different chain lengths (i.e. PEG-800, -2000 and -5000) have been prepared and characterized.

View Article and Find Full Text PDF

Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon -emitting imaging agent [Tc]TcMDP.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has a leading place in medicine as an imaging tool of high resolution for anatomical studies and diagnosis of diseases, in particular for soft tissues that cannot be accessible by other modalities. Many research works are thus focused on improving the images obtained with MRI. This technique has indeed poor sensitivity, which can be compensated by using a contrast agent (CA).

View Article and Find Full Text PDF

The growing concern over the toxicity of Gd-based contrast agents used in magnetic resonance imaging (MRI) motivates the search for less toxic and more effective alternatives. Among these alternatives, iron-iron oxide (Fe@FeOx) core-shell architectures have been long recognized as promising MRI contrast agents while limited information on their engineering is available. Here we report the synthesis of 10 nm large Fe@FeOx nanoparticles, their coating with a 11 nm thick layer of dense silica and functionalization by 5 kDa PEG chains to improve their biocompatibility.

View Article and Find Full Text PDF

The synthesis of poly[N,N-bis(3-aminopropyl)glycine] (PAPGly) dendrons Gd-based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons (G-0 or dendron's core, and G-1) with peripheral NH groups to conjugate a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) derivative and afterwards to chelate with Gd paramagnetic ions. These complexes, which have a well-defined molecular weight, are of relevance to MRI as an attempt to gain higher H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure.

View Article and Find Full Text PDF

The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures.

View Article and Find Full Text PDF

Biofilms are excellent bioindicators for water quality assessment because of their ability to integrate contamination, and their position at the base of the trophic chain in aquatic environments. Pesticides are ubiquitous in aquatic environments and can constantly interact with aquatic organisms, including those that make up biofilms, at fluctuating concentrations. The aim of this study was to describe pesticide behaviour in biofilms.

View Article and Find Full Text PDF

In this lab-scale study, the POCIS capacity to integrate short contamination peaks of variable intensity and duration was evaluated. POCIS were immersed for 14 days in tanks filled with tap water and spiked at different concentrations with 12 pesticides of various polarities (log K = 1.1-4.

View Article and Find Full Text PDF

Fifty-one monitoring stations from the Water Framework Directive network (2000/60/CE) were selected in the Adour-Garonne basin (117,650 km, SW France). These stations were characterized by a diversity of land use, implying different water pesticide contamination profiles. In each, Polar Organic Chemical Integrative Sampler (POCIS) deployment (14 days) and grab water samples (1 per period) were performed 6 times in 2016 in order to obtain contamination levels (29 pesticides monitored).

View Article and Find Full Text PDF

Introduction: Human spontaneous osteonecrosis of the knee (SPONK) is still challenging as the current treatments do not allow the production of hyaline cartilage tissue. The aim of the present study was to explore the therapeutic potential of cartilage regeneration using a new biphasic scaffold (type I collagen/hydroxyapatite) previously loaded or not with concentrated bone marrow cells.

Material And Methods: Female rabbits were operated of one knee to create articular lesions of the trochlea (three holes of 4 × 4mm).

View Article and Find Full Text PDF

Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model.

View Article and Find Full Text PDF
Article Synopsis
  • Fine-needle aspiration (FNA) is a common method used to check for thyroid cancer, but some harmless lumps still end up being treated like cancer.
  • Researchers studied a protein called galectin-1 to see if it could help tell the difference between benign and malignant thyroid tumors.
  • They found that galectin-1 was missing in benign tumors but present in cancer cells, making it a good marker to help diagnose thyroid cancer early.
View Article and Find Full Text PDF

A new facile synthetic strategy was developed to prepare bifunctional monophosphinic acid Ln-DOTA derivatives, Gd-DO2AGAP and Gd- DO2AGAP. The relaxivities of the Gd-complexes are enhanced compared to Gd-DOTA. Monophosphinic acid arm of these Gd-complexes affords enhancement of inner sphere water exchange rate due to its steric bulkiness.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MetS) is characterized by systemic disturbances that increase cardiovascular risk. Adiponectin (Ad) exhibits a cardioprotective function because of its anti-inflammatory and anti-atherosclerotic properties. In the bloodstream, this adipocytokine circulates on multimers (Ad), among which high molecular weight (HMW) are the most active forms.

View Article and Find Full Text PDF

Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector.

View Article and Find Full Text PDF

To study the physicochemical properties of lanthanide complexes derived from a bifunctional chelating agent based on a PMN-tetraacetic acid moiety {PMN-tetraacetic acid (1): [2,6-pyridinediylbis(methylene nitrilo)-tetraacetic acid]}, 4-carboxylic acid substituted pyridine derivative (2) was synthesized. This ligand forms heptadentate (N3 O4 ) Ln(III) complexes (Ln = Gd, Eu, Tb), with two water molecules completing the inner coordination sphere of the metal. The parameters that govern the relaxivity of the Gd(III) complex and the luminescence of Eu(III) and Tb(III) complexes were obtained by (17) O and (1) H NMR studies and time-resolved fluorescence experiments, respectively.

View Article and Find Full Text PDF