Publications by authors named "Sebastien Bloyer"

Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs.

View Article and Find Full Text PDF

Hox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions.

View Article and Find Full Text PDF

The ribosomal protein uL11 is located at the basis of the ribosome P-stalk and plays a paramount role in translational efficiency. In addition, no mutant for uL11 is available suggesting that this gene is haplo-insufficient as many other Ribosomal Protein Genes (RPGs). We have previously shown that overexpression of Drosophila melanogaster uL11 enhances the transcription of many RPGs and Ribosomal Biogenesis genes (RiBis) suggesting that uL11 might globally regulate the level of translation through its transcriptional activity.

View Article and Find Full Text PDF

Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression.

View Article and Find Full Text PDF

Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability.

View Article and Find Full Text PDF

Mammalian Cyclins G1 and G2 are unconventional cyclins whose role in regulating the cell cycle is ambiguous. Cyclin G1 promotes G2/M cell cycle arrest in response to DNA damage whereas ectopic expression of CCNG2, that encodes Cyclin G2, induces G1/S cell cycle arrest. The only Drosophila Cyclin G was previously shown to be a transcriptional regulator that interacts with the chromatin factor Corto and controls expression of the homeotic gene Abdominal B.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) cascades are evolutionary conserved transduction pathways involved in many cellular processes. Kinase modules are associated with scaffold proteins that regulate signaling by providing critical spatial and temporal specificities. Some of these scaffold proteins have been shown to be conserved, both in sequence and function.

View Article and Find Full Text PDF

Polycomb-group (PcG) and trithorax-group (trxG) genes encode important regulators of homeotic genes, repressors and activators, respectively. They act through epigenetic mechanisms that maintain chromatin structure. The corto gene of Drosophila melanogaster encodes a co-factor of these regulators belonging to the Enhancer of Trithorax and Polycomb class.

View Article and Find Full Text PDF

Background: Polycomb (PcG) and trithorax (trxG) genes encode proteins involved in the maintenance of gene expression patterns, notably Hox genes, throughout development. PcG proteins are required for long-term gene repression whereas TrxG proteins are positive regulators that counteract PcG action. PcG and TrxG proteins form large complexes that bind chromatin at overlapping sites called Polycomb and Trithorax Response Elements (PRE/TRE).

View Article and Find Full Text PDF

MLL fusion proteins are leukemogenic, but their mechanism is unclear. Induced dimerization of a truncated MLL immortalizes bone marrow and imposes a reversible block on myeloid differentiation associated with upregulation of Hox a7, a9, and Meis1. Both dimerized MLL and exon-duplicated MLL are potent transcriptional activators, suggesting a link between dimerization and partial tandem duplication of DNA binding domains of MLL.

View Article and Find Full Text PDF

The polyhomeotic (ph) gene is a member of the Polycomb group of genes (Pc-G), which are required for the maintenance of the spatial expression pattern of homeotic genes. In contrast to homeotic genes, ph is ubiquitously expressed and it is quantitatively regulated. ph is negatively regulated by the Pc-G genes, except Psc, and positively regulated by the antagonist trithorax group of genes (trx-G), suggesting that Pc-G and trx-G response elements (PREs and TREs) exist at the ph locus.

View Article and Find Full Text PDF

In a screen for Drosophila genes that interfere with transcriptional repression mediated by the Polycomb group of genes, we identified a dominant mutation affecting the Alhambra (Alh) gene, the fly homologue of the human AF10 gene. AF10 has been identified as a fusion partner of both MLL and CALM in infant leukemias. Both fusion proteins retain the leucine zipper domain of AF10 but not its PHD domain.

View Article and Find Full Text PDF