Publications by authors named "Sebastiao J Formosinho"

New halogenated and sulfonated bacteriochlorins and their analogous porphyrins are employed as photosensitizers of singlet oxygen and the superoxide ion. The mechanisms of energy and electron transfer are clarified and the rates are measured. The intermediacy of a charge-transfer (CT) complex is proved for bacteriochlorins, but excluded for porphyrins.

View Article and Find Full Text PDF

Glycerol/methanol (9:1) mixtures at 255 K behave as rigid media for photoinduced electron transfers that take place within a few hundred nanoseconds. This media also provides enough polarity and plasticity to accommodate charge separations with reaction free energies ranging from +3 to -34 kcal/mol. The distance dependence of the electron transfer rates from electronically excited aromatic hydrocarbons to nitriles in this medium is accurately described by an exponential decay constant of 1.

View Article and Find Full Text PDF

The concept of "chemical reactivity" assumes that atoms and molecules contain the necessary information to describe their evolution over time as they transform from reactants to products. This concept was useful in the past to rationalize reactivity trends and predict the behavior of new systems. Free-energy relationships have played a central role in this field.

View Article and Find Full Text PDF

The energy barriers of symmetrical methyl exchanges in the gas phase have been calculated with the reaction path of the intersecting/interacting-state model (ISM). Reactive bond lengths increase down a column of the Periodic Table and compensate for the decrease in the force constants, which explains the near constancy of the intrinsic barriers in the following series of nucleophiles: F(-) approximately Cl(-) approximately Br(-) approximately I(-). This compensation is absent along the rows of the Periodic Table and the trend in the reactivity is dominated by the increase in the electrophilicity index of the nucleophile in the series C View Article and Find Full Text PDF

The reaction path of the intersecting-state model is used in transition-state theory with the semiclassical correction for tunneling (ISM/scTST) to calculate the rates of proton-transfer reactions from hydrogen-bond energies, reaction energies, electrophilicity indices, bond lengths, and vibration frequencies of the reactive bonds. ISM/scTST calculations do not involve adjustable parameters. The calculated proton-transfer rates are within 1 order of magnitude of the experimental ones at room temperature, and cover very diverse systems, such as deprotonations of nitroalkanes, ketones, HCN, carboxylic acids, and excited naphthols.

View Article and Find Full Text PDF

Steady-state fluorescence of 4'-dimethylamino-3-hydroxyflavone (DMA3HF) was observed in supercritical carbon dioxide (scCO(2)). Excited-state intramolecular proton transfer (ESIPT) occurs resulting in two well-separated emission bands corresponding to the normal and tautomer forms. As the scCO(2) density exceeds 0.

View Article and Find Full Text PDF

We measured the temperature dependence (from +32 to -50 degrees C) of charge-recombination rates between contact radical ion pairs in isopropyl ether. In the systems selected for this study, aromatic hydrocarbon cations are the electron acceptors and the fumaronitrile anion is the electron donor. Nearly quantitative electron transfers occur at all temperatures.

View Article and Find Full Text PDF

Charge-recombination rates in contact radical-ion pairs, formed between aromatic hydrocarbons and nitriles in supercritical CO(2) and heptane, decrease with the exothermicity of the reactions until they reach -70 kcal mol(-1), but from there on an increase is observed. The first decrease in rate is typical of the "inverted region" of electron-transfer reactions. The change to an increase in the rate for ultra-exothermic electron transfer indicates a new free-energy relationship.

View Article and Find Full Text PDF

Excited-state proton transfer from 5,8-dicyano-2-naphthol to methanol takes place in CO2/methanol mixtures, in the pressure and temperature ranges of supercritical CO2. The efficiency of the proton-transfer step decreases with the pressure. This is assigned to the perturbation of the methanol clusters solvating the naphthol.

View Article and Find Full Text PDF

We calculate energy barriers of atom- and proton-transfer reactions in hydrogen-bonded complexes in the gas phase. Our calculations do not involve adjustable parameters and are based on bond-dissociation energies, ionization potentials, electron affinities, bond lengths, and vibration frequencies of the reactive bonds. The calculated barriers are in agreement with experimental data and high-level ab initio calculations.

View Article and Find Full Text PDF

The kinetics of triplet-triplet (T-T) energy transfer have been analysed with a view to linking theories of chemical reactions (involving the rupture and formation of bonds) with theories of processes, such as electron transfer or energy transfer, which preserve chemical bonding. As for the latter, our analysis does not support the claim that, of the two rival expressions for T-T energy transfer, both rooted in the golden rule, only one is applicable to electron transfer or T-T transfer. Though the two expressions do reflect different standpoints, the distinction is eroded by the assumption of a delta-function distribution for the vibrational spectrum.

View Article and Find Full Text PDF

A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals.

View Article and Find Full Text PDF

We calculate transition-state energies of atom-transfer reactions from reaction energies, electrophilicity indices, bond lengths, and vibration frequencies of the reactive bonds. Our calculations do not involve adjustable parameters and uncover new patterns of reactivity. The generality of our model is demonstrated comparing the vibrationally adiabatic barriers obtained for 100 hydrogen-atom transfers with the corresponding experimental activation energies, after correction for the heat capacities of reactants and transition state.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session53r6krsrjkdgbnlg0roc8s31arjb8llg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once