Background: Non-negative linear combinations of elementary flux modes (EMs) describe all feasible reaction flux distributions for a given metabolic network under the quasi steady state assumption. However, only a small subset of EMs contribute to the physiological state of a given cell.
Results: In this paper, a method is proposed that identifies the subset of EMs that best explain the physiological state captured in reaction flux data, referred to as principal EMs (PEMs), given a pre-specified universe of EM candidates.
Background: This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models.
View Article and Find Full Text PDF